THE DANISH INGOLF-EXPEDITION

VOLUME III

13

CRUSTACEA MALACOSTRACA VIII (AMPHIPODA IV)

B

K. STEPHENSEN

WITH 38 FIGURES ANI) io CHARTS IN THE TEXT

COPENHAGEN
PRINTED BY BIANCO LUNO A/s

1944

Contents.

(* indicates that the species is new to the area.)

II. Tribe (G.MVARIDEA	Page	Genus Lembos B.te	
m. Calliopzizder (i. O. Siks, Ippendix	Pape	*328. Lembos (longidigitans (Bonxıer):')	
271. Hulirages quadridentutus G. O. Sars	3	Fam. Photide Boeck...	
272 elegans (Normin?) Stebming	3	Genus Photis Kiroyer.	
Fam. Plpustider Stebrivg.	4	329. Photis reinhardti Kroxer	
Crenus I'rustes Spexce Bite	4	Gremus Eurystheus Bate	
286. Plenstes manoplus (КヶのYER)	4	*330. Eurystheus abyssnlis n. sp.	
Crenus l'arapleustes Buchmolz.....	4	Genus Buthyphotis n. gen.	
287. Perapleustes pulchellus Krover	4	*331. Bathyphotis tridentatn n. sp.	
Grenus stemopleustes fr. 0. Sirs	4	Genus Bomierella Chevreux .	
-68. stenopleustes nodifer (G, O. Sars)	4	*33. Bommierella abyssi C'uevreux	
289. - malmgreni (BoEck)	4	Genus Podoceropsis Boeck.	
Genus sumpleustes stennixg.	4	333. Podoceropsis nitida (Stimpson)	
2910. Symplenstes lutipes (M. Sins)	4	Gemus Protomedeia Kroyer	
*291. - dentutus ('amreux	t	334. Protomedeia fasciatu Kroyer?	
*292. - megacheir (Walker)	5	Fam. Inssida Stebbing	
*293. - pulchellus (G. O. Sırs)	5	Genus /schyrocerus Kroyer	
Fam. Paramphithoide Stenbing	5	335. Ischyrocerns manoides (II. J. Hinsexi)	
Genns Epimeria Costi	5	*336. - hunseni n. sp.	
*294. Epimeria prrasitien (31. Surs)	5	*337. - commensalis Chevreux	
295. - loricata G. U. Sars	5	338. - megaehpir (Boeck)	
296. - eornigera (J. C. Fibricies		*339. - ussimilis (G.O.S.irs)	
Genus P'errmphithoë Brizelic's	6	341 . - megalops G. O.Sars	
297. Parnmphithoë hystrix (Ross)	6	341. - breticornis (G. O. Sars)	
Fam. Amathillopsidke Pirlot	6	342. - brusilovi Gurdanova	
Genus Imathillopsis Heller.	6	Fam. Corophiida D.xas.	
*298. Amathillopsis athantieu Chevreus	6	Genus Eriethonius Milame-Edwards.	
299. - spinigera Heller		343. Ericthonius megulops (G. O. Sars)	
Genus Clpomardolsis Barvard		Gemus Yohela S. J. Smitir	
*30U. Cleonardopsis earinata Barsard		344. Veohpla monstrosa (Boeck)	
Fam. Atylidee 1i. U. Sirs.	7	Genus Luciola Say	
Genus Nototropis Costa	7	345. I'nciola laticornis H.J. Haxsen	
301. Vototropis (smitti (GOEs)?)	7	346. - ernssipes H. J. Hansen	
302. - nordlandieus (Bueck)	9	*347. - petaloeera (G.0. Sars).	
Fam. Eusiride Stebbing	9	Fam. Podoceridue Stebbicig	
Genus Eusirus Kroyer	9	Genus Latmatophilus Brizelites	
303. Eusirus abyssi n. s	9	348. Leetmatophilus armatus Normas	
304. - tialfiensis K. Stephexsex	11	Genas Xenodice Boeck	
*305. - biscayensis Bonnier	11	349. Nenodice frouenfeldti Boeck	
306. - holmi II. J. Ifansen	11	fenus Dutiehiu Kroyer.	
307.	12	351\%. Dulichit macera G. O. Sars	
Gemus Meteusiroides Pirlot	13	*351. - hirtieornis (3. O. Sars	
308. Neteusiroides eurridactyla Pirlot	13	*352. - nardlandien Boeck	
Genus Eusirellu Chevreux	13	*353. - abyssi n.sp.	
*309. Eusirella flegans Chevreux	13	*354. - spinosa n.sp.	
fiemus Cleontrdo Stebung.	13		
310. Cleonardo appendienlatus (G. O. Sirs)	13		
311. - microductylus K. STEPILERSEN	13		
Genus Rhachotropis S. I. smith	13	Fam. Ingolfiellidee II. J. Hansex	
312. Rhaehotropis aeuleatu (Lepecmin)	15	Genus Ingolfiella H.J. Hinsex	
*313. - (hergueleni stebbixg?)	15	350. Ingolficlla abyssi H. J. Hinsen	
314. - grimaldi ('herrbeux)..	16		
315. - helleri (Воеск).	16		
315. - (mucropus G. U. Sars?)	16	1V. Tribe C.IPRELLIDEA	
*317. - rostrata Bosmier	16	Fam. Caprellide Dana	
*318. - distineta (Holmes)	18	Genus Protellina n. gen.	
*319. - faeroensis נ. sp.	18	*356. Protellina ingolfi n. sp	
Fam. Lepechinellide Schellexberg	15	Genus Purripalpino n. gen. ...	
Genus Lepeehinella stebbizg.	18	*357. Parripalpina verrueosu 11. sp.	
*320. Lepechinella chrysotheras Stebbing	19	Cremus Thorima n. gen.	
*321. - sehellenbergi nom. nov.	19	*358. Thorima spinosa n. sp.	
Fan. Frommarides Leich.	20	Genus Eginella Boeck	
Genus Melita Lexcu	20	359. Eginella spinosa Boeck	
*32.2. Melita richardi Chevreux	20	Genus Eqinina Norman.......	
*323. - ubyssorum n. sp.	20	360. Eqinina longicornis (LROYER)	
324. - dentuta (liroyer)	21	Genus Procginina K. stepuensen....	
Genus Ceradocus Costa...	22	361. Progginime norreqiea. (K.Stephesien).	
325. Ccralocus torelli (Goes)	22	Genus Caprelle Lamarck	
324. - buffini K. stephensex	22	362. Caprella microtubereulita G. O. Sirs	
Fain. .toride Sterbisg	22	363. - punctuti Boeck	
Genus doru Kroyer	22	364. - horrida 1\%. O. Sars	
327. Iorte typira Kroyer.	22	365. - rinki k. Stephensen	

Introduction.

TThe present fourth (and last) part of the Amphipenda of the Ingolf-hxpedition is writen after another seheme than that of the three first parts (rot. 3, nos, 8,9 and $11,1!29331$). Theses three first parts, comprising the Hyperidea and the Gammaridea up to and including the fam. Calliopiitw (the familios are listed in the same order as in stebmso, Amphipota (iammaridea, Tierreich, vol. 21,1906) were written aceording to the primary plan, the aim of which was that the report shoukd be a famas of the area of the Ingolf-Expedition, and thus comprise atl the suecomes found in the seas romel the Fiaroes, lecland, and (irecndaml.

Later on, however, the issue of special famas of the Faroes, Iceland and bast (ireenland was started (a fanam of Werst freenland has not been plamed as yet), amd these fanas eomprise all speries from depths down to about $300-400 \mathrm{~m}$. If all thesse, mamly littoral and sublittoral, species shonh be ineheded in the higolfreport the result would be a needless repetition of numerous species and localities ${ }^{1}$).

Therefore it was deeded that the present paper should eomprise
 maining part of the liammaridea + logolliellidea and ('apres) lidea, altopether st specirs. The majority are found only at alepths $>1(N)$ Iil.

No less than 32 species are mow to the areaz), 11 even bow foresence; they are as follows

```
No. 303. Lunirus alyysi n. sp.
    31!!. Rhachotropis /armomnsis 4. sp.
    323. Wrtile abysworume 11. s1).
    330. Eurysthous abyssales 11. sp.
    331. Bathyphotis tridenuta n. gen. n. sp)
    336. Ischyrocerus hanseni n. sp.
    - 353. Dulichia alygssi n. sp.
    351. - sрimosa n. sp.
    - 35f. Protellima ingolfi n. gen. 11. slr.
    - 357. Parripalpime cerrucose n. gen. n. sp
    358. Thorima spinosa 14.gen, 11. sp
```


Abbreviations in the explanation of the figures.

A.1-2: anteme 1-2.
ac.jl.: areessory flagellum of antemina 1.
C: cephaton, liead.
E. $1-3$: epimeral plates $1-3$ of the metasome suments.
L.:: anterior lip, ipper lip.
I.: posterior lip. lower lip.
M.. 11s.: metasomm.
Md.: mandible.

Mr.1-2: maxilla 1-2.
11.xpl.: maxilliperd.

1 . 1 -í: pereiopods $1-7$.
ן.: jalp.
T. \because telson.
$1 \because$ urosome
[1.1-3: uropods 1-3.
1's.1-\%: urosome seqments $1-3$.

II Tribe: Gammaridea.

Family: Calliopiidæ G. O. Sars.

Appendix.

271. Halirages quadridentatus. G. O. Sirs.

Halirages quadridentahs K . Stephensen, "Jngoll"-Exped., vol. 3 , part 11, 1931, 1. 268, p. 271.

Additional loealities:
$67^{\circ} 57^{\prime} \mathrm{N}, 6^{\circ} 14^{\prime} \mathrm{W}, ~ 2386 \mathrm{~m} . \div 1^{\circ} 1$. "Ingolf". St. 112.
20 about $38-45 \mathrm{~mm}$, very defective. The determination is not certain. for seeond joint in pereiopod 7 has lower hind corner rounded.
$70^{\circ} 05^{\prime} \mathrm{N}, 8^{\circ} 26^{\prime} \mathrm{W}, 699 \mathrm{~m}, \div 0^{\circ} 4$. "Ingolf" St. 116: 23-1H-1896. 1 specimen about 24 mm .
${ }^{1}$) 79 species belonging to thest families and not included in the present Ingolf-report are known from the area from depths of $0-400 \mathrm{~m}$: 43 out of these are found at the Farnes, io at Ireland, 53 at East Greenland and 61 at West Greenland.
 3 specimens up to about 30 mm .
$68^{\circ} 27^{\prime} \mathrm{N}, 8^{\circ} 20^{\prime} \mathrm{W}, 1996 \mathrm{~m}, \div 1^{\circ} 0$. "Jngolf" St. $118: 24-\mathrm{V}^{\prime} \mathrm{JJ}-1896$. 4 specimeus up to 35 mm .
$64^{\circ} 40^{\prime} \mathrm{N}, 15^{\circ} 40^{\prime} \mathrm{W}, 932 \mathrm{~m} . \div 06$. "Ingolf" St. 121: 28- VII-1896. \because specimens up to alout 30 mm .

272. Halirages elegans (Nommu?) Stappers.

Halirages elegans \mathfrak{k}. Stephensen. "Ingolf"-Exped.. vol. 3. part I1, 1931, p. 268, 2ї.

Additional locality:
$64^{\circ} 07^{\prime} \mathrm{N}, 11^{\circ} 12^{\prime} \mathrm{W}, 46 \mathrm{~m}, ~ 2^{\circ} 5$. "Ingolf", St. $1: 13-\mathrm{V}^{*}-1895$. 2 specimens abont 25 mm .
${ }^{2}$ See Contents, the speries marked with an asterisk *

Family: Pleustidæ Stebbing.

Paramphithoider G. O. Sars. Crust. of Norway, rol. 1, 1895. p. 343. Pleustidle stebbing. Tierreich, vol. 21, 1906, p. 309.
Pleustida ('herreux it Fage, Fame de France. vol. 9, 1925, p. 184.

Genus: Pleustes Spence Bate.

236. Pleustes panoplus (たrover)

Pleustes penoplus G. U. Sars, I. c. 1895 , p. 344 , pl. 121
Plenstes panoplus stebbing, 1. e. 1906 , p. 310.
Oeenrence:
 1 specimen.
$61^{\circ} 42^{\prime} \mathrm{X}, 9^{\circ} 36^{\prime} \mathrm{W}, 1026 \mathrm{~m}, 4^{\circ} 8$. "Ingolf" St. 44: 14-V111-1895. 1 small specimen.
These depths are extraordiuarily great: usually the species lives in the littoral and sublittoral zones.

Distribution. Probably a panarctie(-boreal) species; for further details see K. Stephessen, Tromso Mus. Skr., rol. 3, 1935-12, p. 253, and my paper on the Amphipods of East Greenland, soon going into the press.

Genus: Parapleustes Buchholz.

287. Parapleustes pulchellus (Kroyer)

Paramphithoë euucantha G. O. Sars, Norske Nordhavs-Exp., vol.6, Crust., 1885, p.168, pl. 14 fig. 3.
Paramphithoë pulehellue G. O. Sars, Crust. of Norway, vol. 1, 1895, p. 346, pl. 122 fig. 1.

Neopleustes pulchellus Stebling, Tierreich, vol. 21, 1906, p. 312.
Oceurrence:
$65^{\circ} 14^{\prime} \mathrm{N}, 55^{\circ}+2^{\prime} \mathrm{W}, 791 \mathrm{~m}, 35 . \quad$ Ingolf" st. 28: 1-111-1895. 1 specimen.
$65^{\circ} 14^{\prime} \mathrm{N}, 30^{\circ} 39^{\prime} \mathrm{W}, 1416 \mathrm{~m}, 2^{\circ} 1$. "Ingolf" St. 95: 27-V1-1896. 3 specimens.
$65^{\circ} 24^{\prime} \times, 29^{\circ} 00^{\prime} \mathrm{W}, 1384 \mathrm{~m}, 1^{\circ} 2 .{ }^{\circ}$ Ingolf" St. 96: 28-V1-1896. 1 specimen.
$66^{\circ} 16^{\prime} \mathrm{N}, 26^{\circ} 08^{\prime} \mathrm{W}, 600 \mathrm{~m}, \div 0^{\circ} 1$. Capt. Wandel leg. 1889. 1 specimen.
The last-named specimen is the form exaconthus G. O. Sars 1885 ; the specimens from the three "Ingolf"-Stations belong to the form pulehellus G. O. Sars 1895.

These depths are extraordinarily great: the usual depths seem to be $150-300 \mathrm{~m}$.

Distribution. Au arctic-boreal species, distributed from Kara Sea and Arctic America to the Skagerrak; for further details see K. Stephevse.., Tromso Mus. Nkr., vol. 3, 1935-42, p. 255.

Genus: Stenopleustes G. O. Sars.
2s. Stenopleustes nodifer (G. O. Sars).
Stenoplenstes nodifer (. O. Sars, Crust. of Normay, vol.1, 1895, p. $35 \mathrm{~F}, \mathrm{pl}$. 125 fig. 2.

Stenoplenstes nodifer Stebbing, Tierreich, vol. 21, 1906, p. 316.
stenoplenates nodifer Cherreux \& Fage, Faune de France, vol. 9, 1925, p. 187, figs.

Olonremé:
$61^{\circ} 42^{\prime} \mathrm{N}, 9^{\circ} 36^{\prime} \mathrm{W}, 1026 \mathrm{~m}, 4^{\circ} \mathrm{S}$. "Theolf" St. th: 14-1III-1895. 3 specimens.
$65^{\circ} 14^{\prime} \mathrm{N}, 30^{\circ} 39^{\prime} \mathrm{W}, 1416 \mathrm{~m}, 2^{\circ} 1$. "Ingolf" St. 95: 27-NT-1896. 1 specimen.
Two of the specimens from St. 44 have nodi also on 6th mesosome segment, so that there are in all 4 (not 3) pairs of nodi. The depths are extraordinarily great (see below).
Distribution. From the Trondheimfjord to the Faroes and NW. France, $60-285 \mathrm{~m}$: Connecticut. For further details see K. Stephersex, Tromso Mus. Skr., vol. 3, 1935-12, p. 259.

289. Stenopleustes malmgreni (Boeck).

Stenopleustes malmgreni (i. O. Sars, Crust. of Norway, vol. 1. 1895, p. 355 , pl. 125 fig. 1.

Stenopleustes malmgreni Stebbing, Tierreich. vol. 21. 1906, p. 316.
Oceurrence:
$65^{\circ} 14^{\prime} \mathrm{N}, 30^{\circ} 39^{\prime} \mathrm{W}, 1416 \mathrm{~m} .2^{\circ} 1$. "Ingolf" St. 95: 27-VI-1896. 1 specimen.
This specimen was not dissected, but it scems to agree well with Sars 1.c. and it has the very large eyes characteristic of the genus.

Distribution. Norway from Oslofjord to about $70^{\circ} \mathrm{N}, 150-$ 350 m (K. Stephensen, Tromso Mus. Skr., vol. 3, 1935-42, p. 259). S. and SW. of Iceland, 143-326 (K. Stephexsex, Zool. of Iceland, vol. 3, no. 26, 1940, p. 45).

Genus: Sympleustes Stebbing.

290. Sympleustes latipes (M. Sars).

Peraplenstes latipes G. O. Sars, Crust. of Norway, vol. 1, 1895, p. 360. pl. 12-7.

Sympleustes latipes Stebbing, Tierreich, vol. 21, 1906, p. 317.
sympleustes latipes Cherteux \& Fage, Faune de France, vol. 9, 1925, p. 189, fig.

Occurrence:
$63^{\circ} 0 t^{\prime} \mathrm{N}, 9^{\circ} 22^{\prime} \mathrm{W}, 493 \mathrm{~m}, 5^{\circ} 3 .{ }^{\circ} \mathrm{Ingolf"}$ st. 2: 12-V 1895. 1 specimen.
$65^{\circ} 14^{\prime} \mathrm{N}, 55^{\circ} 42^{\prime} \mathrm{W}, 791 \mathrm{~m}, 3{ }^{\circ} 5$. "Ingolf" St. 28: 1-III-1895. 2 specimens.
$65^{\circ} 16^{\prime} \mathrm{N}, 55^{\circ} 05^{\prime} \mathrm{W}, 682 \mathrm{~m}, 3^{\circ} 6$. "Ingolf" St. 35: 18-YH-1895. 1 specimen.
$62^{\circ} 00^{\prime} \mathrm{N}, 21^{\circ} 36^{\prime} \mathrm{W}, 1591 \mathrm{~m}, 3^{\circ} 3$. "Ingolf" St. 40: 9-VIII-1895. 1 specimen.
$61^{\circ} 12^{\prime} \mathrm{N} .9^{\circ} 36^{\prime} \mathrm{W}, 1026 \mathrm{~m}, 4^{\circ}$. "Ingolf" St. 44: 14-VIII-1895. 3 specimens.
$65^{\circ} 24^{\prime} \mathrm{N}, 29^{\circ} 00^{\prime} \mathrm{W}, 1384 \mathrm{~m}, 1^{\circ} 2$. "Ingolf" St. 96: 28-11-1896. 1 specimeu.
$61^{\circ} 15^{\prime} \mathrm{N}, 9^{\circ} 35^{\prime} \mathrm{W}$, 900 m . "Thor" St. 99: 22-V'190t. About 10 specimens.
$70^{\circ} 32^{\prime} \mathrm{N}, 8^{\circ} 10^{\prime} \mathrm{W}$, about 900 m , clay. H. Detchmas leg. 27-111891. 3 specimens.

Distribution. Widely distributed from \mathbb{W}. (ireenland and northeastern U.S.A. to Murman Coast and Açores; depths from $60-1600 \mathrm{~m}$. For special localities, see K. Stephexsex; Tromso Mus. Skr.. rol. 3, 1935-42, p. 260, and Zool. of Iceland, vol. 3, no. 26, 1940, p. 45.

291. Sympleustes dentatus Chevtenx.

Sympleustes dentatus Chevrenx, Amphip.; in: Expéd. sci. Travailleur et Talisman, 1927. p. 91. pl. 7 figs. 13-26.

Oceurrence
 1 specimen．
The specimen is rather defective，it has lost urosome；length 7.5 mm ．As far as could be ascortamed withont disaretion，it

Fig．1．S＇ympleustes megacheir j．preiopod 2．＂Ingolf＂st． 11.
that the hand of pereiopod 2 is somewhat hroader in the＂Ingolf＂－ specimen．No marsupial plates could be fomd．

Distribution．Near the（＇anaries $28^{\circ} 33^{\prime} \mathrm{N}, 15^{\circ} 39^{\prime} \mathrm{W} .916 \mathrm{~m}$ ， sand etc．， 1 f（type－locality；（HEVREUX l．c．）．

292．Sympleustes megacheir（WValker 1897）（Fig．1）． （＝？S．grandimanus（Chevтеux 185í））．
Parapleustes megacheir Walker，Jour．Limn．Sue．，vol．26，1897， p． 230 ，pl． 18 fig． 4 （ 4 specimens（all $\hat{0}$ ？），up to 8 mm）．
Sympleustes megucheir Stebbing，Tierreich，vol．21．1906，p． 317.
Symplenstes meguchcir（＇hevreux，Amphip．；in：Expéd．sci．Tra－
vailleur et Talisman， 1927, p． 88, pl． 7 figs．6－12（ 1 ô 6.5 mm ， 1 ovigerons of 8.5 mm ）．
Šympleustes megacheir Chevreux，Rés．（＇amp．Sci．Monaco，vol．90， 1935 ，p． 101 （＂m exemplaire＂），pl． 1 fig． 15 （col．fig．）．
Probably symonymous with：
Amphithopsis grandimamu Chevreux，Bull．Soc．Zool．France， ソ゚ol．12．1887，p． 570 （ 1 q， 7.5 mm ）．
Dauzenbergia grandimana Chevreux．Rés．C＇amp．Sci．Dlonaco， vol．16． 1900 ，p． 73 ，pl． 10 fig． 1 ，a－k（ 1 ㅇ 7.5 mm ）．
Dautarnbergia gramhimana Stehbing．Tierreich，vol．21，1906，p．72e．
Sympleustes grandimana Stehbing，ibid．p．318．
Sympleustes grandimana Sexton，Proc．Zool．Soc．London，1910， p．857，pl． 80 figs．S 32 （5 千 $3-7.5 \mathrm{~mm}$ ）．
Sympleastes grandimanus C＇hevreux，Amphip；in：Expéd．sci． Travailleur et Talisman，1927，p．86，pl． 7 figs．1－5（1 ¢ 8 mm ）．
Sympleustes（Dautzenbergia）grandimana Barnard，Amphip．；Joln Murray Exped．，vol．4，no．6，1937，p． 158 （1 immature of 6.5 mm ）．

Occurrence：
$64^{\circ} 34^{\prime} \mathrm{N}, 31^{\circ} 12^{\prime} \mathrm{W}, 2448 \mathrm{~m}, 1^{\circ} 6 . " I n g o l f "$ St．11：21－V＇－1895． 2 of abont $11-12 \mathrm{~mm}$ ，on a fmely ramose Gorgonid．

Remarks．It is not quitr cloar if s．grandimamus（Chevreux 18\＆7）and 5. mrgurheir（Walker 1897）are synonymous or not．
 drseribed，t a single ovigerous $\boldsymbol{f}^{\text {f（ }}$（Cherenx 1927）．

Tho＂Ingotf＂－specimens arr ơo which are moll larger（11 12 mm ）than the largest pecimens hitherto deseribel（8 8．5 mm）． They anree fairly woll with obs of \boldsymbol{S} ．megucheir，as deseribed and drawn hy Whaker l．© and Chevaeta 1527．Pereiopod 1 （ grathopod 1）has the finger finely denticulate as recorded by CHEvRsim 1927 for s．metucheir（this character is not mentioned in Waiker＂s original description 1897）．Pereiopod 2 （ $=$ gnathopod 2）dillers howerer from Watkek I．c．fig．IIs and Cheveeux 1927 lig． 9 in having the proximal process on the palm triangular and much more projecting than in the figuros rited；this difference is possibly due to the differener in size of the sprecimens．Telson is apically notrhed to alront $1 / 3$ of the length aml agrees with Wad－

 and Jour．Mar．Biol．Assor．Unit．Kingdom，vol．4，1！！11．p．209）． $13^{c} 12^{\prime} 50^{\prime \prime}-13^{\circ} 12^{\prime} 15^{\prime \prime}$ N， $1153^{\prime} 30^{\prime \prime}-11^{\circ} 52^{\prime} \mathrm{W}, 363510 \mathrm{~m}$（心．grami－ mana，type－locality；（Hevrevx 1887 and 1900）．SW．of lreland， about 1.100 m （心．megacheir，type－locality；Wabker 1897）． $38^{\circ} 16^{\prime} 35^{\prime \prime} \mathrm{N}, 28^{\prime} 17^{\prime} 20^{\prime \prime} \mathrm{W}, 1022 \mathrm{~m}$（s．meyacheir；（HEVREX$\left.\times 1935\right)$ ． $29^{\circ} 03^{\prime}$ N． $14^{4} 48^{\prime} \mathrm{W}, 1220 \mathrm{~m}$ ，and $29^{\circ} 01^{\prime} \mathrm{N}$ ， $11^{\circ} 51^{\prime} \mathrm{W}$ ， 11 NO m
 （ぶ．gramlimana；Cuevrevx 1！227）．Indian Ocean：South Jrabian Coast．St．54：21 50^{\prime} N． $59^{\circ} 52^{\prime} \mathrm{Ez}, 1046 \mathrm{~m}$（心．grandimama：Bap－ NaRD 1937）．

293．Sympleustes pulchellus（（i．O．Sars）．
Poropleustes pulchellus G．O．Sars，Crust．of Norway，vol．1，1895， p． $359, \mathrm{pl}$ ． 126 fig． 2.
Sympleustes pulchullus Stebhing，Tierreich，vol．21，190f，p． 319. Oecurrence：
$63^{\circ} 13^{\prime} \mathrm{N}, 15^{\circ} 14^{\prime} \mathrm{W}, ~ 1130 \mathrm{~m}, 4^{\circ} 5$ ．＂Inqolf＂St．7：17－1＂－1895． 1 specimen．
$61^{\circ} 30^{\prime} \mathrm{N}, ~ 22^{\circ} 30^{\prime} \mathrm{W}, 1886 \mathrm{~m}, 3^{\circ} 0$ ．＂Ingolf＂St．67：3－V］－1896． 1 specimen．
$66^{\circ} 18^{\prime} \mathrm{N}, 25^{\circ} 5 y^{\prime} \mathrm{W}, 621 \mathrm{~m} . \div 0^{\circ} 75$ ．＂Ingolf＂St．15：4－1＂1－1895．$^{\circ}$ ． 2 specimens．
$63^{\circ} 06^{\prime} \mathrm{N}, 56^{\circ} 00^{\prime} \mathrm{W}$ ，2258 m．24．＂Ingolf＂St．24：25－V］－1895． About 15 specimens．
$65^{\circ} 14^{\prime} \mathrm{N}, 55^{\circ} 42^{\prime} \mathrm{W}, 791 \mathrm{~m}, ~ 35^{\circ} 5$ ．＂Ingolf＂St．28：1－V＂ll－1895． 2 specimens．
Distribution．From Gireenland to Novaja Zemlya，with the deep Polar Basin，depths $30->1000 \mathrm{~m}$ ；for special localities see K．Stephensen，Tromso Mus．Skr．，vol．3，1935－12，p． 263.

Family：Paramphithoidæ Stehbing．

Epimerider G．O．Sars，Crust．of Norway，vol．1，1895，p． 362.
Paramphithoida Stebhing，Tierreich，vol．21，1906，p． 320.
Paramphithoidar C＇hevreux \＆Fage，Fanne de France，vol．9，1925， p． 190.

Genus：Epimeria Costa．

294．Epimeria parasitica（M．Nars）．
Epimeria parasitica（i．O．Sars，Crust．of Norway，vol．1．1895， p． $366, \mathrm{p} .129$ fig． 1.
Epinteria parasitica Strbbing．Tierreich，vol．21，1906．p．321．

Occurrence：
 specimens．
Distribution．Northern Norway and western Norway，deep water；Bay of Biseay 411 m （ K. Stephexsen，Tromso Mus．Skr．， vol．3，1935－42，p．264）．

295．Epimeria loricata（i．O．Sars．
Epimeria loricata G．O．Sars，Crust．of Norway，vol．1．1895． p． 368, pl． 129 fig． 3.
Epimerin loricata Stebbing．Tierreich，vol．21，190t．p． 322.

Oceurrence:
$63^{\circ} 21^{\prime} \mathrm{N}, 25^{\circ} 21^{\prime} \mathrm{H}$, 320 m , temp.? "Ingolf" St. 85: 17-VI-1896. 1 specimen.
$62^{\circ} 58^{\prime} \mathrm{N}, 7^{\circ} 09^{\prime} \mathrm{W}, 731 \mathrm{~m}, \div 0^{\circ} 4$. "Ingolf" St. 143: 11-VIII-1896. I specimen.
$\left.66^{\circ} 35\right)^{\prime} \mathrm{N}, 56^{\circ} 38^{\prime} \mathrm{H}, 599 \mathrm{~m}, 3^{\circ} 9$. "Ingolf" St. 32: 11-VIl-1895. 4 specimens.
$65^{\circ} 37^{\prime} \mathrm{N}, 56^{\circ} 37^{\prime} \mathrm{W}, 500 \mathrm{~m} . ~ " D a n a " ~ 22-\mathrm{V} I-1925$, Ad. S. Jensen. 1 specimen.
$66^{\circ} 32^{\prime} \mathrm{N}, \quad 18^{\circ} 50^{\prime} \mathrm{W} .480 \mathrm{~m} . \quad$ "Dana" St. 3241 : 12-VIII-1927. 1 specimen.
$66^{\circ} 18.7^{\prime} \mathrm{N} .18^{\circ} 36^{\prime} \mathrm{H}, 360 \mathrm{~m}$. "Dana" St. 5982: 19-VII-1938. N
Jistribution. From Greenland to Spitsbergen, Barents Sea, and Nkugerrak; also about $43^{\circ} \mathrm{N}, 51^{\circ} \mathrm{W}, 1100 \mathrm{~m}$: depths $100-$ 1400 m . For special localities see K. Stepheasen, Tromso Mus. Skr.. vol. 3. 1935-42, p. 265, and Zool. of Iceland. vol. 3. no. 26, 1940, ए. 46 .

296. Epimeria cornigera (1. C. Fabricius).

Epimeria cornigera (\&. O. Sars, Crust. of Norway. vol. 1, 1895, p. 364 , pl. 128.

Epimeria cornigera Stebbing, Tierreich, vol. 21. 1906, p. 323.
Epimeria cornigera Chevreux \& Fage, Fame de France, vol. 9, 1925. 1. 191, figs.

Oceurrence:
$61^{\circ} 08^{\prime} \mathrm{N}, 9^{\circ} 28^{\prime} \mathrm{W}, 820 \mathrm{~m}$. "Thor" St. 78: 12-1"-1904. Numerous specimens.
$61^{\circ} 1^{\prime}{ }^{\prime} \mathrm{N}, 9^{\circ} 35^{\prime} \mathrm{W} .900 \mathrm{~m} .{ }^{\prime}$ Thor" St. $99: 22-\mathrm{I}^{+}-1904$. 3 specimens.
Distribution. From northern Norway and Iceland to the Hediterrauean; also South aud East Africa, depths 6t-900 m. For special localities see K. Stephensen, Tromso Mus. Skt.. vol. 3 , 1935-12, p. 266, and Zool. of Iceland, vol. 3, no. 26, 1940, p. 47.

Genus: Paramphithoë Bruzelius.

297. Paramphitoë hystrix (Ross).

Acanthozone cuspidata G. O. Sars, Crust. of Norway, vol. 1, 1895, p. 370 , pl. 130.

Paramphithoë hystrix + P. cuspidata Stebbing, Tierreich. vol. 21, 1906, p. 325, p. 326.

Occurrence:
$65^{\circ} 34^{\prime} \mathrm{N}, 7^{\circ} 31^{\prime} \mathrm{W}, 1435 \mathrm{~m}, \div 0^{\circ} 8$. "Ingolf" St. 105: 11-111-1896. 1 specimen.
Distribution. Widely distributed in the arctic seas with adjacent waters, probably circumpolar; depths $10-300(1435) \mathrm{m}$. For special localities, see K. Stephersen, Tromso Mus. Skr., vol. 3, 1935-42, p. 267.

Family: Amathillopsidæ Pirlot.

Amuthillopside Pirlot, Siboga-Exped., Amphip., vol. 2 pt. 2, 1934, p. 201, and pt. 3, 1936, p. 238.

According to Pirlot this new family comprises the following three genera, viz., Amathillopsis Heller, Acanthopleustes Holmes, and Cleonardopsis Barnard ($=$ Amathillopleustes Pirlot). Two of them are represented in the "Ingolf"-material.

Genus: Amathillopsis Heller.

Amathillopsis Stebbing, Tierreich, vol. 21, 1906, p. 384.
Amathillopsis Pirlot, l. c. 1934, p. 201.
298. Amathillopsis atlantica Cherreux.
Amathillopsis allantica Chevreux, Bull. Inst. Océanogr. Mouaco,
uo. 122, 1908 , p. 3, fig.
Amathillopsis atlanticu Chevreux, Rés. Camp. Sci. Monaco, vol. 30 , 1935. p. 113 , pl. 1 fig. 20 (col. fig.). pl. 12 fig. 4.

Occurrence:
$61^{\circ} 30^{\prime} \mathrm{N}, 22^{\circ} 30^{\prime} \mathrm{W}, 1836 \mathrm{~m}, 3^{\circ} 0$. "Ingolf" St. 67: 3-II-1896. 2 specimens up to about 20 mm .

Distribution. $39^{\circ} 11^{\prime} \mathrm{N}, 30^{\circ} 24^{\prime} 15^{\prime \prime} \mathrm{W}, 1600 \mathrm{~m} ; 38^{\circ} 18^{\prime} \mathrm{N}$, $28^{\circ} 14^{\prime} 45^{\prime \prime} \mathrm{W}, 1692 \mathrm{~m}$; $37^{\circ} 40^{\prime} \mathrm{N}, 26^{\circ} 26^{\prime} 15^{\prime \prime} \mathrm{W}, 1919 \mathrm{~m}$ (ChevREI'S l. ©.).

299. Amathillopsis spinigera Heller (Chart I).

Amathillopsis spinigera G. D. Sars, Crust., Norske Nordhavs-Exp., 1885, p. 181, pl. 15 fig. 2.
Amathillopsis spinigera Stebbing, Tierreich, vol. 21, 1906, p. 384.
Oceurrence:
$65^{\circ} 00^{\prime} \mathrm{N}, 11^{\circ} 16^{\prime} \mathrm{W}, 584 \mathrm{~m}, \div 0^{\circ} 1$. "Ingolf" St. 59: 20- T-1896. 1 q about 12 mm .
$66^{\circ} 23^{\prime} \mathrm{N}, 12^{\circ} 15^{\prime} \mathrm{W}, 1011 \mathrm{~m}, \div 0^{\circ} 7$. "Ingolf"'St. $101: 10-\mathrm{VII}-1896$. 2 specimens, including 1 of with marsupinm.
$66^{\circ} 23^{\prime} \mathrm{N}, 10^{\circ} 26^{\prime} \mathrm{H}, 1412 \mathrm{~m}, \div 0^{\circ} 9$. "Ingolf" St. 102: 10-VII-1896 1% with big young.
$66^{\circ} 23^{\prime} \mathrm{N}, 8^{\circ} 52^{\prime} \mathrm{W}, 1090 \mathrm{~m}, \div 0^{\circ} 6$. "Ingolf" St. 103: 10-VII1896. 1 亿.
$66^{\circ} 23^{\prime} \mathrm{N}, 7^{\circ} 25^{\prime} \mathrm{W}, 1802 \mathrm{~m}, \div 1^{\circ} 0$. "Ingolf" St. 104: 11-VII1896. 4 ㅇ.
$65^{\circ} 34^{\prime} \mathrm{N}, 7^{\circ} 31^{\prime} \mathrm{W}, 1435 \mathrm{~m}, \div 0^{\circ} 8$. "Ingolf" St. 105: 11-YII1896. 1 ㅇ.
$65^{\circ} 34^{\prime} \mathrm{N}, 88^{\circ} 54^{\prime} \mathrm{W}, 842 \mathrm{~m}, \div 0^{\circ} 6$. "Ingolf" St. 106 : 12-V'II1896. 1 f.
$65^{\circ} 29^{\prime} \mathrm{N}, 13^{\circ} 25^{\prime} \mathrm{IV}, 72 \mathrm{~m} .1^{\circ} 5 . ~ " I n g o l f "$ 'St. 109: 18-VII-1896. 2 우.
$66^{\circ} 44^{\prime} \mathrm{N}, 11^{\circ} 33^{\prime} \mathrm{W}, 1471 \mathrm{~m}, \div 0^{\circ} \mathrm{s}$. "Ingolf" St. 110: 19-VII1896. 1 of with young.
$69^{\circ} 13^{\prime} \mathrm{N}, 8^{\circ} 23^{\prime} \mathrm{HV} .1889 \mathrm{~m}, \div 1^{\circ} 0$. "Ingolf" St. 117: 24-VII1896. 5 specimens including 1 of with young, 38 mm .
$68^{\circ} 27^{\prime} \mathrm{N}, 8^{\circ} 20^{\prime} \mathrm{WV}, 1996 \mathrm{~m}, ~ \div 1^{\circ} 0$. "Ingolf" St. 119: 25-VII1896. 2 specimens including 1 ovigerous ㅇ.
$67^{\circ} 29^{\prime} \mathrm{N}, 11^{\circ} 32^{\prime} \mathrm{W}, 1666 \mathrm{~m}, \div 1^{\circ} 0$. "Ingolf" St. 120: 25-V'II1896. 1 specimeu.
$67^{\circ} 10^{\prime} \mathrm{N}, 15^{\circ} 40^{\prime} \mathrm{H} .932 \mathrm{~m}, \div 0^{\circ} 6$. "Ingolf" St. 124: 28-VII1896. 5 specimens including 1 of with marsupium 43 mm .
$68^{\circ} 08^{\prime} \mathrm{N}, 16^{\circ} 02^{\prime} \mathrm{W}, 1373 \mathrm{~m}, \div 0^{\circ}$. "Ingolf" St. 125: 29-V'II1896. 1 specimen.
$63^{\circ} 29^{\prime} \mathrm{N}, 6^{\circ} 59^{\prime} \mathrm{W}, 1469 \mathrm{~m}, \div 0^{\circ} 9$. "Ingolf", St. 140: 11-VIIl1896. 1 specimen.

Distribution. The deep Polar Basin with adjacent seas, from East Greenland to Franz Joseph Laud (type locality) and Kara Sea, depths 66 m (Kara Sea) to 2000 m (Polar Basin), usually at negative temperatures. For special localities see K. Stephensex. Tromso Mus. Skr., vol. 3. 1935-42, p. 299, and Zool. of Icelaud, vol. 3, no. 26, 1940, p. 49. with chart p. 79, and my paper on the Amphipods of East Greeuland (species no. 111), shortly going into the press.

Chart I. Distribution of Amathillopsis spinigera. $=$ new localities, O localities from the literature.

Genus: Cleonardopsis Barnard.

Cleonardopsis Barnard, Ann. South Afric. Mns., vol. 15, 1916, p. 175. Amathillopleustes Pirlot, Siboga-Exped., Monogr. 33 d, 1934, p. 204 (fide Pirlot, ilicl., Monogr. 33 e, 1936, p. 237).

300. Cleonardopsis carinata Barnard.

Cleonarilopsis carimata Barnard, 1. c. 1916, p. 176, pl. 27 figs. 7-9. Amathilloplenstes alticoxa Pirlot, l. c. 193t, p. 205, figs.
Cleomardopsis carimata Pirlot, l. c. 1936, p. 237 (synonymy; etc.). Occurrence:
$64^{\circ} 54^{\prime} \mathrm{N}, 55^{\circ} 10^{\prime} \mathrm{W}, 740 \mathrm{~m}, 3^{\circ} \mathrm{S}$. "Ingolf" St. 27: 1-V'Il-1896. 1 ovigerous q about 10 mm .
$61^{\circ} 07^{\prime} \mathrm{N}, 3^{\circ} 30^{\prime} \mathrm{W}, 850 \mathrm{~m} .{ }^{*}$ Thor" St. 78: 12-1"-1904. 1 specimen (\hat{o} ?) about 7 mm .
$61^{\circ} 15^{\prime N} \mathrm{~N}, 9^{\circ} 35^{\prime} \mathrm{W}, 900 \mathrm{~m} . "$ Thor" St. 99: 22-V-1904. 6 specimens (all $\hat{0}$?) up to about 7 mm .
The largest specimen (from "Ingolf" St. 27) was dissected (except the oral parts), and 1 find no difference from Pirlot's description and figures.

Distribution. South Africa: Cape Point NE. by E., distant 36 miles, 1200 m (Barnard 1. c.). Moluccas: $2^{\circ} 40^{\prime} \mathrm{S}, 128^{\circ} 37^{\prime} 5 \mathrm{E}$, 835 m (Pirlot l. c. 1934).

Family: Atylidæ (i. O. Sars.

Atylide G. O. Sars, Crmst. of Norway, vol. 1, 1895, p. 461.
Atylide Stebbing, Ticreeich, vol. 21, 1906, 1. 327.
Atylidre Chevreux \& Fage, Faune de France, vol. 9, 1925, p. 193.

Genus: Nototropis Costa.

301. Nototropis (smitti (Goës)?) (Fig. 2)

Paratylus smitti (i. O. Sars l. c.. p. 468, pl. 165 fig. 1.
Nototropis smitti Stebbing l. c., p. 332.

Occurrence:
$61^{\circ} 07^{\prime} \mathrm{N}, 99^{\circ} \mathbf{W}, 835 \mathrm{~m} . \quad$ "Thor" St. 78: 12-V-190t. $1 \hat{\jmath}$ juv", aloout 9 mm .
$61^{\circ} 15^{\prime} \mathrm{N}, 9^{\circ} 35 \mathrm{H}, 900 \mathrm{~m} . "$ "Thor" St. $99: 22-\mathrm{V}-1904.1 \mathrm{o}^{\circ}(?)$ about 13 mm .

Remarks. These two specimens are very close to N. smitti and should probably be referred to that species. I have compared them with Sars l.c. and with specimens from varying depths

Fig. 2. Nototropis (smitti?). "Thor" St. 78, 1904.
(down to 200 m) in East Greenland and find the following differences (but I give drawings of all the limbs).

Rostrum more stout and apically more blunt. The lappet under the eyes broader than deep and posteriorly defined by a rectangular noteh (as in specimens from East Greenland): in Sars's figure the lappet is deeper than broad and the notch arute-angled. The eyes are colourless, rather large and oblong (as in East Greenland specimens); in Sars's figure they are rounded and smaller. In antenne 1-2 flagella have rather few joints (about 20 in ant. 1, about 16 in ant. 2): in Sars's drawing and in East Greeuland specimens there are many more joints, probably due to the larger length of the specimens. The oral parts were dissected out, hat I have found no differences from N. surammerdami (M.Edw.) (see G. O. Sars I. c., p. 463, pl. 163). Pereiopod 2 has sideplate widened in the proximal end (fore and hind edges are not
parallel), and metacarpus somewhat narrower than in Sars's fig. and in East Greenland specimens. Pereiopod 5: forelobe of sideplate rounded, not acute, and lower hind corner of second joint rounded rectangular, not acute-angled. Pereiopod 7: hind margin of second joint with a few setæ in upper half, in N. smitti densely setose, and with a few spines near lower hind corner. Uropod 3 totally lost.

These disagreements are so small that I dare not erect a new species; lout the "Thor"-specimens are taken from much greater depths $(835-900 \mathrm{mn})$ than those in which the species usually is found (down to abont 250 m).

Distribution. A mainly arctic species, found from Greenland to the New Siberian Islands; for special loealities see K. Stephensen, Tromso Mus. Skr., vol. 3, 1935-42, p. 277.
302. Nototropis nordlandicus (Bueck) (lig. 3).
 p. 169), pl. 165 tig. 2.
 1, 3:32.

Orenrrence:
 sрес्लinens.

 I. e.. but differs in the following essmatials. (I have, however, dissected a specemen from Woest Norwity, detrrmined by sars, and lind that it in all details agrees with the "thor"-spectmens).

Rostrum a trifle more stont and a little shorter, half as long as first joint of antema $1:$ ocular lohe rading in a tooth, and lower lobe more protruding that in Sars"s Figure Branchise distinctly lobular in perejoporls $2-5$. hut simple in pereiopods 67 (SARE l. c. writes: "hranchial lamella distinctly lobndar", hut doms
not say that in the two last pairs of prempores they ure simple). I'reropad 2 : sideplate has lower hime rormer at lit there rounded

Fige. 3. Vototropis mordlamdicus.
that in SARsis fig., and the acute projection on lower hind comer of second joint of pereioporl 7 more hatrow.

Distribution. From sonthern Norway to rastern Murnan Coast, $30-230 \mathrm{~m}$. For spectial localities see Ǩ. Stepmensen, Tromson Nus. Nkr., vol. 3, 1935 12, 1. 277.

Family: Eusirida stehbing.

Eusirida G. O. sars, Crust. of Norway, vol. 1. 1895, p. 411. Eusirile Stehhing, Tierreich, vol. 21. 1906, p. 33 s.

Genus: Eusirus Kroyer.

Lusirus (. O. Sars, Crust. of Norway, vol. 1, 1895, p. 115.
Eusirus Stehbing, Tierreieh, vol. 21, 1906, p. 338.
Between 1906 (Stebbing 1.e.) and 1938 (Zoological Record) the following species were erected.

1. E. laticurpus Chevreux, Exp. Antaret. Frasçaise, Sei. Nat., Docum. Sci., Paris 1906, p. 49, figs. - Chevreux, Ze Exp. Autaret. ..., Paris 1913, p. 167.
2. E'. boumicri Chevreux, Anal. Mus. Nac. Buenos Aires, ser. 3 a, vol. 14, 1911, p. 405, figs.
3. E. tjalfiensis is Stephensen 1912, so below, p. 11.
4. E. splendidus Chilton, Edinburgh Trans. R. Soc., vol. 18. 1t. 2. 1912, p. 492, figs. Synonymous with
E. perdentatus Chevreux, I. с. 1913, p.163, fig. - Schellenterg. D. Sisipolar-Exp., Zool., vol. 10, 1926, p. 350. - Barnard, Terra Nova-Exped. (British Antarct. Exped.), Natural Hist. Rep., Zool., vol. 8, no. 4, 1930. p. 387. - Schellenherg, Further Results Swed. Antarct. Experd. 1901 1903 . . edited by Sixten Bock, vol. 2, no. 6, 1931, p.173. Bamard, Discovery Rep.. vol. 5. 1932, p. 189, fig. Nicholls, Austral. Autaret. Exped. 1911-14. ser. C. Zool. and Bot., rol. 2, part 4, 1938, p. 98.
5. E. microps Walker, see Barmard, Diseovery Rep., vol. 5. 1932, p. 191.
6. E. partas Pirlot, Siboga-Expe, Monogr. 33 d. Leiden 1934, p. 210, figs.
7. E. sp. Pirlot ibid. 1934, p. 212, figs.
8. Eusirus (?) abyssi 11. sp. (Figs. 4-5).

Oceurrenee:
$60^{\circ} 37^{\prime} \mathrm{N}, 27^{\circ} 52^{\prime} \mathrm{W}, 1505 \mathrm{~m}, 4^{\circ} 5$. "Ingolf" St. 78: 13-17-1895. 2 \% with large marsupinm, length exelusive of telson (which is lost) 15 mm .
bescription. The specimens are very defective: telson and distal part of sereral appendages are lost. The intedument is somewhat horny as in Eusirus, not paperaceons and thin as in Eusimgenes.

Rostrum short. The 3 metasome segments and first urosome segment are carimate, each with a medio-dorsal tooth. Hind margin of third epimmal plate very finely sermate. Telson lost.

Eyes rould not he found. Antema 1 , first joint as long as hear! + first scgment, terminating in two dentiform processes; second joint a little shorter and more slonder, ending in a single dentiform lappet: third joint very short, with a tongre-shaped lappet: the preserved part of tlagellum as long as first joint of peduncle. Aecessory flagellum a trille lonषer than third joint of peduncle. Antema 2, ultimate joint of peduncle a little shorter than penultimate joint: the preserved part of flagellum as long as peduncle, with numerous short joints.

Oral parts agree fairly well with those described and drawn by Stebbiva (Trans. Limi. Soc. Lomlon, ser. .2, vol. 10, 11, 1904, 11.15, pl. 2 A) for Eusiragenes dolichocarmus, but differ in the following characters: epistome very high, higher than upper lip: mandibles: third joint in palp about as long as first + second joints (as in Eusirus), not shorter (as in Eusirogenes); lower lip: nothing noteworthy to remark: maxilla 1 : inner plate very narrow, ending in two sete" (Stebbivi: "seemingly very slight"): paljs: right palp has the two joints of equal length, in left palp) second juint is twice as long as first joint (Stebblag: "first joint searcely half as long as second"): maxitha 2 arrees fairly well with Stebbin: l.c.; maxillipeds: outer plates abont twice as broad as inner plates (Stebbinc: "little broader . .") ; palp: first joint about half as long as second, which is a tritte donger than third joint: fourth joint in length about ${ }^{3}$, of 3rd joint (StebBISG: "second, third and fourth joints elongate, . . subequal in length").

Perciopod 1: side-plate rather similar to E. propinquus (G. O. Sars, (rust. of Norway, vol.1, 18:95, p. 417. pl.147 fig.1); the following joints of the limb not different from pereiopod 2, but a tritle shorter. Perciopod 2: side-plate not derper than hroad, with fore corner rounded, and hind corner rectangular; second joint rather long, also fourth joint long; process on fifth joint

Fig. 4. Eusirus ubyssi. $\quad .1 / x .1=$ maxilla 1 from the right side. $1 . M x .1 \mathrm{p}$. $=$ palp of maxilla 1 from the left side.

Fig. 5. Eusirus ubyssi.
(carpus) very broad, broader than high; sixth joint (metaearpus), length ahout $2 / 5$ of breadth: the obtuse projection armed with 3 short and one very long spine: dactylus slender and eurved. Pereiopod 3. side-plate somewhat thomboid, but deeper than hroad and deeper than side-plate 2; second joint very long, but a trille shorter than fourth + fifth joints eombined; fith joint half as long as second, dactylus lost. Pereiopod 4 , side-plate falcate.
about as broud as deep. Pereiopols 5-7. second joint of about equal length and breadth, hind margin finely serrate; joints 4-7 lost. Uropod 1 (rather defective) seems to be similar to Eusirus: uropods 2-3 and telson lost.

Affinities. This species belongs perhaps to Eusirus (head not arching over base of antenne 1 ; third joint of mandibular palp as long as first and second joints combined; pereiopod 1

Chart I]. Distribution of Eusirus holmi. = new localities, $O=$ localities from the literature. + the type-locality
not smaller than pereiopod 2), perlaps to Eusirogenes ${ }^{1}$) (distal margin of upper lip straight : imer plates of maxillipeds completely separate: shape of process on fifth joint of pereiopods $1-2$).

On the whole it seems to be more close to Eusirus than to Eusirogenes. It differs from all other species of Eusirus ${ }^{2}$) in the very broad process on fifth joint of pereiopods 1.2 and in the very narrow 6 tl joint in the same limbs. The specific name abyssi is proposed in allusion to the very great depth (1505 m) in whieh it was taken.

304. Eusirus tjalfiensis K. Stephensen.

Eusimus tjalfiensis K. Stephensen, Vid. Medd. Naturh. Foren. Kjobenhavn, vol. 64, 1912 (1913), p.94, fig. 5.
Oceurrenee:
$70^{\circ} 41^{\prime} \mathrm{N}, 52^{\circ} 07^{\prime} \mathrm{W}, 750 \mathrm{~m}, 800 \mathrm{~m}$ wire out. "Tjalfe" St. 171: 6-V111-1908.
Not taken outside this locality.
${ }^{1}$) Cenus Eusirogenes Stebbing, Trams. Linn. Soc. London. ser. 2. vol. 10. IJ, 1914, p. 15, with the following 3 species:

1. E. dolichocarpus Stebbing (Bay of Biscay. mesoplankton trawl, 20no to 1000 fathoms); ibid. p. 15. pl. 2 A.
2. E. propinquus Scott (59-36' ${ }^{\prime}$, $7^{\prime} 00^{\prime}$ W' 1140 m): Scott, Anm. Mag. Nat. Ilist.. ser. 8. val. $4,1919, ~ p .31, ~ p l .2$ figs. 1-9.
3. E. deflexifrons Shoemaker (Cabot Strait, (fulf of St. Lawrence, 387 m) Shoemaker, Contrib. Canad. Biol.. vol. 5, 1930, p. 311, figs.
${ }^{2}$) List of species. see above p. 9.

305. Eusirus biscayensis Bonnier.

Eusims biseayensis Bomnier, Amn. Univ. Lyon, vol. 26, 1896, p. $651, \mathrm{pl} .39 \mathrm{fig} .1$.

Eusims biseayensis Stebbing. Tierreieh, vol. 21, 1906, p. 342.
Eusims biscuyensis Sexton, Proe. Zool. Soc. London, 19(19), 1. 8(30.), figs.
Oefurrenee:
$61^{\circ} 07^{\prime} \mathrm{N}, 9^{\circ} 2 \mathrm{R}^{\prime} \mathrm{H}, \mathbf{8 2 0} \mathrm{m}$. "Thor" Nt. 78: $12-\mathrm{V}^{\prime}-1904.3$ specimens (1 \& with marsupinm. $2 \mathrm{~J}^{*}$?), all rather defective.
$61^{\circ} 15^{\prime} \mathrm{N}, 9^{\circ} 35^{\prime} \mathrm{W}, 900 \mathrm{~m}$. "Thor" St. 99: 22- V -1904. Abont 10 specimens $(0,9)$, all rather defective.
In all these specimens uropod 3 is lost.
Distrihution. Bay of Biscay $44^{\circ} 36^{\prime} N, 43 x^{\prime}$ If, 950 m . mud, 1 of (type-locality; Bonnier). $48^{\circ} 7^{1 / 2} \mathrm{~N}, \mathrm{~s}^{\circ} 13^{\prime} \mathrm{W}$. about 475 m , fine sand, $], 6$ of (Sextos).

306. Eusirus holmi H. J. Hansen (Chart 1I).

Eusirus holmi H. J. llansen. Fijmphna-Exped.. Kjobenhavi. 1886. p. 224. pl. 22 fig. 1.

Lusiru* holmi Stebbing, Tierreich. vol. 21. p. 342.
Oceurrence:
$66^{\circ} 23^{\prime} \mathrm{N}, 12^{\circ} 05^{\prime} \mathrm{W}, 1011 \mathrm{~m}, ~ \div 0^{\circ} 7$. "Ingolf"' St. $101: 10$ - YII-1896. 2 specintens, the largest (3) 51.5 mm .
 s specimens, inchading 3 smaller and 5 larger specimens, two of which are ovigerous q (length up to 48 mm).
 2 perimens: one of them medium-sized, the other (f with marsupimu) 19 mm .

Amerdlokfjord near Holsteinsborg, West Greenland, $250-450 \mathrm{~m}$, several ocenrrences, numerous specimens. Potl Il. Hansen leg. 1935-193s, Ad. S. Jexsex ded.

Distribution. Between Greemland and Arctic America 61° $78^{\circ} \mathrm{N}, 250->700 \mathrm{~m}$ (see K. Stephensen, Meddel. om Gronl.,

Fig. 6. Eusirellu elegras.
$69^{\circ} 19^{\prime} \mathrm{N}, 15^{\circ} 52^{\prime} \mathrm{W}, 552 \mathrm{~m}, \div 0^{\circ} 5$. "Ingolf" stt. 126: 29-111-1896. 1 ovigerous of 49 mm .
$63^{\circ} 26^{\prime N} \mathrm{~N}, 7^{\circ} 56^{\prime}$ IV, $887 \mathrm{~m}, \div 1^{\circ} 6$. "Ingolf" St. 138: 10-VIII-1896. 1 f without marsupium 49.5 mm .
$63^{\circ} 29^{\prime}$ N. $6^{c} 57^{\prime} \mathrm{W}, 1469 \mathrm{~m}, \div \mathrm{n}^{\circ} 9$. "Ingolf" St. 140: 11-V1II-1896. 5 specimens, including 2 smaller and 3 larger: two of these are $\hat{0}$, the largest of them 49.5 mm .
$6322^{\prime} \mathrm{N}, ~ 6{ }^{\circ} 5 \mathrm{R}^{\prime} \mathrm{W}, 1279 \mathrm{~m}, \div 0^{\circ} 6$. "Ingolf" St. 141: 11-1111 18! ! 5 . badly preserved specimens.
$61^{\circ} 23^{\prime} \mathrm{N}, 4^{\circ} 21^{\prime} \mathrm{W}^{\top}$, about $900 \mathrm{~m}, \div 0^{\circ} 4$, mud. Capt. Wandel 1890 . 1 medium-sized specimen
$6123^{\prime} \mathrm{N}, 501^{\prime} \mathrm{W}$, ahont $475 \mathrm{~m} .0^{\circ}$. Wandel 1890 . 1 specimen. $6310^{\circ} \mathrm{N}, ~ \mathrm{~T} 31^{\prime} \mathrm{W}, 1090 \mathrm{~m} .1200 \mathrm{~m}$ wire out. "Thor" St. 230: t-VIII-1904. 3 sperimens.
$53.36^{\prime} \mathrm{N}, 6^{\circ} 20^{\prime} \mathrm{W}$, about $1900 \mathrm{~m}, 600 \mathrm{~m}$ wire out. "Thor" St. 12: 11- V-1913. 1 specimen.
$671 y^{\prime N} \mathrm{~N}, 17.55^{\prime} \mathrm{W} .820 \mathrm{~m}, 800 \mathrm{~m}$ wire out. "Thor" St. 201: 22 111-1904. 1 specimen.
$7032^{\prime} \mathrm{N}, \mathrm{N}^{\circ} 10^{\prime} \mathrm{W}, 900 \mathrm{~m}$. ('lay with small stones. Deichainy leg. 2 specimens.
vol. 79 , No. 7. 1933, p. 36, with chart); the Polar Basin from East Greenland to North of Siheria $96^{\circ} \mathbf{E}$, depths usually $600-1900 \mathrm{~m}$. For special localities, see İ. Stephensen. Tromso Vas. Skr., vol. $3,1935-42$, p. 285.

307. Eusirus spp.

Ocenrence:
$61^{\circ} 15^{\prime} \mathrm{N}, 9^{\circ} 35^{\prime} \mathrm{H}, 900 \mathrm{~m}$. "Thor" S't. 99: 22- $\mathrm{V}-1904.3$ speeimens (2 species, very defective).
$61^{\circ} 07^{\prime} \mathrm{N}, 9^{\circ} 28^{\prime} \mathrm{W}, 820 \mathrm{~m}$. "Thor" St. 78: $12-\mathrm{Y}-1904$. 1 specimen, extremely lefective.

Remarks. From "Thor" St. 993 specimens are availahle; they are, however, so defective, that they camot be determined; probably they represent new species.

One of these species is represented by 2 specimens (\hat{O}), about 8 and 12 mm . The dorsal armature with teeth etc. is as in E. euspidutus Kr. (G. O. Sars, Crnst. of Norway, rol. 1, 1895. p. 416. pl. 16), but telson (lost in the small specimen) is apically entire, not cleft, of a shape rather similar to Apherusa borealis (Boeck)
 half ass long as lirst joint of antemmat．

 thson apreally damaged．
＇lhar specimen from st．To has dursal tereth on the＇fwo first metatiome segments．

Gomus：Meteusiroides｜’irlot．

30s．Meteusiroides curvidactyla（Pirlot）．

E＇usirovides curviductylu Pirlot．Mem．Soc．R．Še．Liége，Be sér．， vol．15，1919，1．10，ligs．
Lhetensiroides curvilactylu Pirlot．1．（c．1931，p．21s．

Occurrence：

$56^{\circ} 5 f^{\prime \prime} \mathrm{N}, 5156^{\prime} \mathrm{W}, 3500 \mathrm{~m}, 3000 \mathrm{~m}$ wire ont。＂（iodthaab＂St．10： 3－V1－192太．I specimen（o̊！）， 12 mm（li．Stephexsen，Meddel． om（ironl．，vol．79，No．7，1933，p，38）．

Distribution．Off Lissabon $37^{\circ} 31^{\prime} \mathrm{N}, 10^{\circ} 32^{\prime} \mathrm{W}, 2500 \mathrm{~m}$ wire out，I specimen（type－locality；Piklot l．c．1931）．

Gemus：Eusirella Chevreux．

E＇usirella Chevreux，13ull．Inst．Océan．Monaco，No．121，I9M8，p． 12. Eusirella Schellenberg，D．＇licfsce－Exp．，vol．23，1926，p． 228. Eusirella Chevreux，Rés．Camp．Sici．Monaco，vol．90，1935，p． 103.

Chevreut has no true diagnosis of the genus．Scuellenberg l．e．has a grood diagnosis，but neither Chevreux nor Sohellex－ beris had adult specimens．An important essential is the extremely short flagellum in antena 2，in length but one fifth of the ultimate joint of peduncle

309．Eusirella elegans（hevreux（Figs．6－7）．

Ensirella elegans Chevreux l．c． 1908,1 ． 12 ，figs．（ $=$ Chevreux l．c． 1935，p．103，pl．11，figs．4，\＆）．
Eusirella elegans Barnard，Discovery Reports，vol．5，1932，p． 194.
Eusirclla caldivia Sehellenberg 1．r．1926，1．228，fig．（fide Bar－ nard l．c．）．

Occurrence：

$61^{\circ} 08^{\prime} \mathrm{N}, 9^{\circ} 28^{\prime} \mathrm{W}, 820 \mathrm{~m} . " T h o{ }^{\prime \prime}$ St．78：12－Y－1904．About 10 specimens．
$61^{\circ} 15^{\prime} \mathrm{N}, 9^{\circ} 35^{\prime} \mathrm{W}, 900 \mathrm{~m} .{ }^{\prime} T h o r^{\prime \prime} \mathrm{St} .99:$ 22－V－1904．About 25 specimens up to 10 mm ．

Remarks．The species is well described hy Chevreur，Sohel－ lenberg，and Barvarb：thongh wach of these anthors had but a single and not adult specimen（C＇uevreux：1＂お＂（probably a of juv．）． 5 mm ：Schellentiers： 1 suecimen（ 0 ？）． 5.5 mm ；Bar－ NAR1）：＂1 $\mathrm{O}^{\text {＂．，}} 8.5 \mathrm{~mm}$ ）），I have not much to add to their descriptions， but give figures of all the appendages．

The material contains several 7010 mm in length，with well developed marsupiums．Antenna 1 as long as head + mesosome + metasome：lengtl ratio of first and sceond joints：3：8：third joint is rery short，not essentially longer than the joints in flagel－ lum．Accessory flagellum（spen mly by Schellescrera）is squami－ form，minute．Flagellum a trifle longer than peduncle，with about 38 joints．Antenna 22 a little shortur than antema I：lemgth ratio of third to fifth juints： $1^{1 / 3}: 1: 5$ ；flagellnm very short，in iength lint one fifth of ultimate joint of perluncle，il－artieulate．Oral parts are described by（hevenux（with figures）and Schelden－ BERG；numbers of spines and setz on oral parts are greater than recorded by behellenberf．First side－plate has lower hind comer

 frmate in the atose amature of antemine $1: 2:$ first joint in

 ration of lirst ant second joints in perduncle of antemat 1 is $5: 8$ ；

 ration of thirel to fiftlo joints： $2: 1: 7$ ．Thimel joint of pedancle has two longitutinal rows of（sensery ！）hairs．Flageflum in longth hut 1_{5} of last joint of perlumela．12－articulate；upprer sile of last joint of perdmede and flagedlum covered with calcembi．

I hate not been able to limel any sexual differences in other appenduges than antemme．

Aales arre probably fairly rare：in the sample from＂Thor＂ St．99，there are 1 adult males，hat 8 \＆with marsupium．

Distribution． $17^{\circ} 111^{\prime} \mathrm{N}, 5^{\circ} 1 \mathrm{x}^{\prime} \mathrm{W}$ ， $1 \times(\mathrm{M} 1 \mathrm{~m}, 1690 \mathrm{~m}$ wire out， $2{ }^{10}$ pem．：＂Ther＂St． $76: 10-111$ 1！0！s； 3 sperimens（in the Zoological

 depth of the sea 5243 m ，I specimen（ k ．maldivir；SCHELLEN－ BEKG：l．c．）．

Genus：Cleonardo Stebbing．

Cleonardo Stebhing，Tierreich，vol．21，1！06，p． 316.
310．Cleonardo appendiculatus（f：O．Sars）．
Tritropis appenticuluta．G．O．Sirs，Norske Northavs－Exp．，C＇rust．， vol．1， $1885, \mathrm{p} .194, \mathrm{pl} .16 \mathrm{fig} .3$.
Cleonardo appendimutus Stebbing，Tierreich，vol．21，1906，p．317．
Cloonardo appendiculata Ki．Stephensen，Meddel．on Groml．，vol．7！， No．7．1933，1，39，figs．

Oecurrence：
Baffin Bay $69^{\circ} 50^{\prime} \mathrm{N}, 61^{\circ} 37^{\prime} \mathrm{W}, 1880 \mathrm{~m}, 3000 \mathrm{~m}$ wire out．＂（iodt－ haab＂St．51： 11 －VII－1928． 2 specimens（K．Stepheasex l．e． 1933）．

Distribution．NW．of Northem Norway $70^{\circ} 51^{\prime} \mathrm{N}, 13^{\circ} 03^{\prime} \mathrm{E}$ ， $2354 \mathrm{~m}, \div 1^{\circ} 2$ ．Biloculina clay（type－locality：（．O．Sars I．c．）．

311．Cleonardo microdactylus K ．Sitephensen．
Cleonurdo microdactyluski．Stephensen，Vid．Meddel．Naturh．Foren． Kjobmhath，vol．64， 1912 （1913），p． 90 ，figs．
Cleonardo mierorlactylus K．Stephensen，Meddel．om（ironl．，vol．79， No．7，1933．p．10，figs．

Oceurrence：
$64^{\circ} 066^{\prime} \mathrm{N}, 55^{\circ} \mathrm{I} 8^{\prime} \mathrm{W}, 1040-1100 \mathrm{~m}, \mathrm{I} 200 \mathrm{~m}$ wire ont（type－locality； K．STEPHENSEN 1！日2）．
$63^{\prime} 19^{\prime} \mathrm{N}, 26^{\circ} 50^{\prime} \mathrm{W}, 1130 \mathrm{~m}$ ， 1000 wire ont； $62^{\circ} 19^{\prime} \mathrm{N}, 5 f^{\circ} 00^{\prime} \mathrm{W}$ ， $2550 \mathrm{ml}, 2500 \mathrm{~m}$ wire out； $56^{\circ} 56^{\prime} \mathrm{N}, 3500 \mathrm{~m}, 3004 \mathrm{ml}$ wire ont （K．ATEPHENSEN 1933）．

Distriluntion． $17^{\circ} 10^{\prime} \mathrm{N}, 18^{\circ} 02^{\prime} \mathrm{W}, 2240 \mathrm{~m}$ wire ont（Pırlot， Mém．Soc．R．Sci．Liége，sér．3，fase．3，1929，p．16）．

Genus：Rhachotropis S．J．Smilh．

Rhaehotropis G．O．Sars，Crust．of Norway，vol．I，1895，p． 123. Rhachotropis Stabbing，Tierreich，vol．21，1906，p． 3 ± 7.

The following species were erected from 1906 (Stebbing, l. c.) to 193心 (Zoological Record):
R. anomala Barnard (close to R. gracitis Bommer; near Cape Point. (i50 fath.). Barmard, Am. S. Afr. Mus., vol. 15, 1916, p. 182. no fig.
R. Iomonosoci Gurjannsa (near R. macropus G. O. Sars and R. leucophthalme (i . O. Sars; Kara Sea, $500-350 \mathrm{~m}$). Gurjanova, Zool. Anzeiger, vol. 108, 1934, p. 124, figs.
R. natator (Holmes) (Santa Catalina Island, California, 2196-222s fath.; Santa ('ruz lsland, 447-510 fath.). Grucilipes natator Hol-

Fig. i. Eusirelln fleguns of, and urosome segment $1 \delta^{\circ}$.
R. antarctica Barnard (close to R. inflata (G. O. Sars) ; South Shetlands etc.). Barnard, Discovery Rep., vol. 5, 1932. p. 194, no fig.
[R. diploops Strauss (nomen nudum; Atlant.). Strauss, D. TiefseeExp., vol. 20, 1909, p. 38 (no description), pl. 4 figs. 24, 25. Does not belong to this genus, see Barnard, Discovery Rep., vol. 5, 1932, p. 193.]
R. distincta (Holmes), see below, species No. 319.
R. hunteri Nicholls (near R. kergucleni Stebbing: antarctic) Nirholls, Australas. Antarct. Exped. 1911-14, Sci. Rep. 2, part 2, 1432. p. 98, figs.
R. Iobula Shoemaker (c. $18^{\circ} 10^{\prime} \mathrm{N}, 64^{\circ} 50^{\prime} \mathrm{W}, 35(1-550 \mathrm{~m})$. Shoemaker. Amithson. Misc. Coll., vol. 91. no. I2, 1931, p. 3. figs.
mes, Proc. U.S. Nat. Mus., vol. 35. 1909, p. 527, figs. -R. nutator Shoemaker, Contrib. Canad. Biol., vol. 5, 1929 (1930), p. 316. R. paeneglaber Barnard (near C'ape Point, 250-400 fath.). Barnard, Ann. S. Afr. Alus. vol 15, 1916, p 181, pl 27 fig. 10
R. palpornm Stebbing ($59^{\circ} 36^{\prime} \mathrm{N}, 7^{\circ} \mathrm{W}, 400 \mathrm{~m}$). Stebbing, Jour. Zool. Soc. London, vol. 30. 1908, p. 194, pl. 28. - Barnard, Amm. S. Afr. Mus.. vol. 15, 1916. p. 179.
R. palporme f. pacifica Schellenberg $\left(8^{\circ} 7.5^{\prime} \mathrm{S}, 104^{\circ} \mathrm{I} 0.5^{\prime} \mathrm{W}, 2081\right.$ fath.). Schellenberg, Bull. Mus. Comp. Zool., Harward Coll., vol. 69, No. 9, 1929. p. 201.
R. platyecra Barnard (close to R. kerqueleni Stebhing; Great Barrier Reef). - Barnard. (ireat Barrier Reef Exped., vol. 4, No. t. 1931, p. 122, fig.
R. proximu C'hevreux (elose to li. rostrata Bonnier; Bay of Biscay, 4380 m). - Chevreux, Jull. Inst. Monaco, No, 20 I, [91], p. 1 J , figs. = Cherreux, Res. ('amp. Sei. Monacu, vol. 90, 1935, p. 110, figs.
R. siloyer Pirlot (close to h. kergueleni Stehbingr; Kn $_{n}$, $117^{\circ} \mathrm{E}$, 1310m). Pirlot, Sihoga-Exp., vol. 331, 1931, p. 216, figs.
R. sp. (elose to h. hefleri (Boeck)). Nehellenherir, Further Zool. Res. Swed. Antarct. Exped. 1901-03 . . e edited by Sixton bock, vol. 2, No. 6, Stockholm 1931, p. 173.
313. Rhachotropsis (kergueleni intwhing?) (Fig. X).

Mhachotropis kergurleni stoblinge, "'hallenger", vol. 2!!, 1888, p 9555 , pl. 85.
Rharhotropis kergueleni stehbing, Tierreich, vol. 21, 190fi, p. 34!.
lihachomropis kergueleni Barmari, Amn. S. Afr. Mus., vol. J5, 1916, p. 71 s .

The speeies was established by Sterbsixa on two specimens, probably males. Later Barsaisi l. थ. recorded an ovigerous fomale; he writos that it agrees with strabsemes males "in all respects

Fig. 8. Rhachotropis (kergueleni?) 千; "Ingolf"St. 35.

312. Rhachotropis aculeata (lepechin).

Rhachotropis aenleata G. O. Sars, Crust. of Norway, vol. 1, 1895, p. $424, \mathrm{pl} .149$.

Rhachotropis aculeata Stebbing, 'Tierreich, vol. 21, 1906, p. 348.
Oecurrence:
$64^{\circ} 07^{\prime} \mathrm{N}, 11^{\circ} 12^{\prime} \mathrm{W}, 446 \mathrm{~m}, 2^{\circ} 5$. "1ngolf" St. 4: 13-VI-1895. 2 specimens up to about 20 mm .
$65^{\circ} 00^{\prime} \mathrm{N}, 11^{\circ} 16^{\prime} \mathrm{W}, 584 \mathrm{~m}, \div 0^{\circ} 1$. "Ingolf" St. 59: 20-Y-1896. I specimen about 35 mm .
Though it is very abundant along the coasts of Greenland and Iceland (but not the Faroes) at depths from about $20-300 \mathrm{~m}$, it is very rarely found at depths so great as the two above-named from the "Ingolf"-Expedition. The oceurrences hitherto known from depths $>400 \mathrm{~m}$ are nearly all in the "Lngolf"-area and are as follows: NW. Greenland $77^{\circ} 17^{\prime} \mathrm{N}, 69^{\circ} 59^{\prime} \mathrm{W}, 930 \mathrm{~m}, \div 0^{\circ} 4$ (K. Stephensen, Meddel. om Gronl., vol. 79, No. 7, 1933, p. 42); North of leeland $66^{\circ} 32^{\prime} \mathrm{N}, 18^{\circ} 50^{\prime} \mathrm{W}, 480 \mathrm{~m}$, and East Iceland $63^{\circ} 25^{\prime} \mathrm{N} .10^{\circ} 30^{\prime} \mathrm{W}, 505 \mathrm{~m}$ (K. Stephensen, Zool. of Iceland, vol.3, No. 26, 1940, p. 48) ; $40^{\circ} 59^{\prime} \mathrm{N}, 51^{\circ} 15^{\prime} \mathrm{W}, 1100 \mathrm{~m}, 3^{\circ} 7$ (J. Grieg, Rep. Sci. "Hichael Sars", vol. 5, 1931, p.3).

Distribution. Widely distributed in the Aretie with adjacent areas, probably circumpolar: for special localities see K. Stephensen, Tromso Mus. Skr., vol. 3, 1935-42, p. 287, for map see K. Stepheasen, Zool. of leełand, vol. 3. No. 26, 1940, p. 80.
except the shorter antenne and the slightly more dehiscent apices of the telson".

Oceurrence:
$64^{\circ} 54^{\prime} \mathrm{N}, 55^{\circ} 10^{\prime} \mathrm{W}, 740 \mathrm{~m}, 3^{\circ} 8 . \quad$ "Ingolf" St. 27: 1-V1I-1895. 1 ovigerous of
 with marsupium.
Remarks on f with large marsmpial plates (hut without marginal setæ), abont 12 mm ("lngolf" St. 35). In the long rostrum, the dorsal armature of metasome segments $1-3$ and urosome segment 1 , the serrate hind margin of metasome segment 3 , the rery small second joint of pereiopods $5-6$, the aente lower hind corner of second joint of perciopod (6-)7, and the telson, this form is very close to R. kergueleni stebbing (Stebbina's two specimens were probably males).

Rostrmm is only a trifle shorter than first joint of antenna 1 (regarding R. kergueleni stebbing says only that "the rostrum is very long and narrow, (lepressed between the upper antemse"). Eyes conld not he found. Hetasome segment 1 has a dorsal tooth, but no dorsal earina; metasome segments 2 and 3 and urosome segments have each a high dorsal carina euding in a large tooth. Epimeral part of metasome segment 3 dentate only along the lower two thirds, uot also along the upper third. Antenne I rather similar to 'xtebbing's figure, but much shorter (Stebbing's specinnens of R. kerguclen were $\delta^{?}$?); they are as long as head +3 (or 4) mesosome segments, reach a trifle beyond peduncle of an-
tenna 2. There is a little, bud-like accessory flagellum, as in R. rostrata (Fig. 9), and Hagellum hass-9 joints. Peduncle of antenna 2 rather similar to that of $\hat{0}$. but shorter: flagellum as long as the two distal joints combined, 14 15-articulate. Oral parts were not dissected out. Pereiopods $1-7$ similar to R. kergueleni (distal joints of prp. 1-7 are lost), except that prp. 5 (Stebbing: prp. 3) has lower lind corner of second joint rounded, not acute, and prp). (stebbisg: prp. 4) has hind edge of second joint rather smooth. not markedly serrate as in Stebbing's figure. Also nropods 1-3 and telson agree with R. kergueleni: but I have not been able to find the phmose setx and small spimles on telson drawn by Stebrive.

Length 12 mm (Stebrlia: 11 mm (O^{*} ?): Barnard: 15 mm (\% orig.)).

As stated abore the "Ingolf"-species is very close to R. kergucleni.

According to the literature 7 species are said to be closely alhed to the said species; this means probably that the lower hind comer of second joint of pereiopod 7 is acute, and that rostrum is rather long.

But some of the species have an other arrangement of the dorso-lateral teeth (see the table). Regarding the number of the

Rhachotropis, species close to R. kergueleni (for literature. sue above. pp. 1t-15).

	Dorsal tootis					Dorsu-lateral teeth			
	$\underset{i}{\text { Miss. }}$	$\begin{gathered} \text { Mits. } \\ 1 \end{gathered}$	$\underset{\substack{\text { 3ts. } \\ 2}}{ }$	Mts. 3	$\stackrel{4}{1}$	$\begin{gathered} \text { MIts. } \\ 1 \end{gathered}$	$\stackrel{3}{2}$	$\xrightarrow[3]{3}$	rs. 1
R. anomeles		-	\times		X				
R. antarctica		\times	\times	0	\times	\times	x	\times	E
f. hunteri		\times		-	\times	\times	\times	0	
R. kergueleni		x	x	x	x.	\times	\times	-	-
R. prenegluber					\times	-	\times	-	
R. platycera.	x	\times	x	x	x	\times	x		
R. proxima		\times	\times	\times	-	\times	\times	-	
R. sibogo		x		\times	0	\times		+	
The "Ingolf"-		\times	$\times 1$	\times	x	\times	\times		

said teeth only three agree with the "Ingolf"-species; they are: R. humeri, R. kergueleni, and R. prorima. But R. proxima difters in apex of telson (apically simply cleft, the two apices not dehiscent): R. hunteri has the median carina on metasome segment 3 "rounded above, produced into minute terminal point". The present speeimens are more closely allied to R.kergueleni than to any of the other species, and the differences from Stebbisco's description and drawings are rather small. Therefore I have determined them as R. (kergueleni?).

Distribution. Kerguelen, depth not specified (type-locality; Stebbing 1888). Cape Point N. 81° E., distant 32 miles, 400 fathoms (BarNarid 1916).

314. Rhachotropis grimaldii (Chevreux).

Rhachotropis grimmldii Chevtenx. Rés. C'amp. Sci. Monaco, vol. I6, $19(0)$, p. 68. p. 9 fig. 1 (1 ovigerous of).
Rhachotropis grimaldii stebbing. Tierreich, vol. 21, 1906, p. 350. Rhachotropis elegan.s Bomnier. Ann. ['niv. Lyon, vol. 26, 1896, p. 65 s, pl. 39 fies I (2 3).

Rhachotropis plegran* Stebbing, Tierreich. vol. 21, 1906, p. 350.
Wharhotropis grimuld ii Baruard, Aun. S. Afr. Mus., vol. 15, 1916, p. $179(=$ R. elegans $)$

Rhachotropis grimaldii - R. eleyans Cherreux. Travailleur et Talisman, Amphip. 1927, p. 95 , figs., p. 96.

Oceurrence:
$61^{\circ} 15^{\prime}$ N, $9^{\circ} 35^{\prime} \mathrm{W} .900 \mathrm{~m} .{ }^{\circ}$ Thor" St. $99: 22-\mathrm{V}-1904.2$ ő.
$62^{\circ} 10^{\prime} 08^{\prime \prime} \mathrm{N}, 19^{\circ} 36^{\prime}$ W. 1900-2150 m. "Thor" St. 164: 12(13)-V1I1903. If with marsupimm.

Remarks. The specimens from "Thor" St. 99 (I.904) have the proximal joints of antenna 1 preserved; a small accessory flagellum is present (as in Bosisier l. c., fig. 4c). The two ôot have mesosome segments dorsally undulating behind as in Bos̃ier's fig. (今̂). the q has the mesosome segments dorsally smooth as in Chevreux's fig. (7); the difference seems to be a sexual character.

Distribution. 1. Atlantic Ocean. $44^{\circ} 17^{\prime} \mathrm{N}, 4^{\circ} 45^{\prime} \mathrm{W}$. 960 m. mud (R. elegans, type-locality; Bonnier l.c.). Between $43^{\circ} 12^{\prime} 50^{\prime \prime} \mathrm{N}, \quad 11^{\circ} 53^{\prime} 30^{\prime \prime} \mathrm{W}, 510 \mathrm{~m}$, and $43^{\circ} 12^{\prime} 15^{\prime \prime} \mathrm{N}, 11^{\circ} 52^{\prime} \mathrm{W}$, 363 m , mud (R. grimaldii, type-locality ; Chevreus 1900). $43^{\circ} 46^{\prime} \mathrm{N}$, $4^{\circ} 27^{\prime} \mathrm{W}, 1143 \mathrm{~m}, \mathrm{mmd}: 38^{\circ} 06^{\prime} \mathrm{N} .11^{\circ} 31^{\prime} \mathrm{W}, 460 \mathrm{~m}$, mud; $21^{\circ} 53^{\prime} \mathrm{N}$, $19^{\circ} 22^{\prime} \mathrm{W}, 888 \mathrm{~m}$, clayish sand: $21^{\circ} 53^{\prime} \mathrm{N}, 19^{\circ} 50^{\prime} \mathrm{W}, 655 \mathrm{~m}$, clayish sand (R.grimaldii: Chevreux 1927). Cape Point Eby N, distant 29 miles, $250-300 \mathrm{fm}$: Cape Point $\mathrm{N} 81^{\circ}$ E, distant 32 miles, 460 fm .; Cape Natal N by E.. distant 24 miles, 440 fm . (K . grimaldï $=$ R. elegans, Barnard 1916).
2. Mediterraneau. $43^{\circ} \varrho^{\prime} 57^{\prime \prime} \mathrm{N}, \varrho^{\circ} 58^{\prime} 30^{\prime \prime} \mathrm{E}$ (off Marseille), 555 m , mud (R. grimaldii, Chevreč 1927).

315. Rhachotropis helleri (Bocck).

Rhachotropis helleri G. O. Bars, C'rust. of Norway. vol. 1, 1895, p. $426, \mathrm{pl} .150$.

Phuchotropis helleri Stebbing, Tierreich. vol. 21, 1906, p. 351.
Rhachotropis helleri Sexton, Proc. Zool. Sor. London, 1909, p. 869, figs.
Oceurrence:
$65^{\circ} 14^{\prime} \mathrm{N}, 55^{\circ}+2^{\prime} \mathrm{W}$. $791 \mathrm{~m}, 3^{\circ} 5 .{ }^{\circ} \operatorname{lng}$ golf" st. 28: 1-171-1895. If with large but empty marsupium, about 14 mm: most of the legs are missing.
$64^{\circ} 15^{\prime} \mathrm{N}, 29^{\circ} 06^{\prime} 1 \mathrm{H}^{\circ}, 1070 \mathrm{~m}, 4^{\circ} 4$. "Ingolf" St. 90 : 21-VI-1896. 1 f with large bnt empty marsupium, about 13 mm ; very defective, the detemination not certain.
It is new to these West Atlantic waters, but recorded from East Greenland.

Distribution. From Kara Sea and spitsbergen to Bay of Biscay; also from recorded Bering or Okhotsk Sca. It has however, frequently been confused with the next species, K. macropus, and therefore several records are not certain. Further see K. Stephensex, Tromso llus. Skr., vol. 3. 1935-12, pr. 289.
316. Rhachotropis (macropus G. O. Sars?).

Rhachotropis macropus G. O. Sars. Crust. of Norway, vol, 1, 1895. p. $428, \mathrm{pl} .151 \mathrm{fig} .1$.

Rhachotropis macropus stebbing, Tierreich, vol. 21, 1906, p. 352. Occurrence:
$66^{\circ} 23^{\prime} \mathrm{N} .8^{\circ} 52^{\prime} \mathrm{W}, 1090 \mathrm{~m}, ~ \div 0^{\circ} 6$. "Ingolf" St. 103: 10-1711-1896. 1 \& with large, but empty marsupium, very defective, length from head to urosome segment 117 mm (urosome segments $2-3$ and telson are lost); the determination not certain.
Distribution. About as R. helleri (above), see K. Stephensen 1. c. 1935-42. p. 290 .
317. Rhachotropis rostrata Bomier (Fig. 9).

Rhachotropis rostrata Bonnier, Ann. Univ. Lyon, vol. 26, 1896, p. 653, pl. 39 fig. 2 (1 ô, 13 mm).

Rhachotropis rostrata Stebbing, Tierreich, vol. 21, 1906, p. 353.
Rhachotropis rostrata Sexton, Proc. Zool. Soc. London, 1909, p. 869 , pl. 81, figs. $46-18(40,9-10 \mathrm{~mm})$.

Fiy. :1. Rhurhotropis rostratio \ddagger.

Fig. 10. Rhachotropis facromsis, All the figures are from $\hat{0}$. except mosome segment 1 in lateral view which is from 7 .

Rhachotropis rostrata Pesta, Zool. Anzeiger. vol. 51, 1920, p. 33. fig. 4 (1 specimen (sex?), 10.5 mm).
Rhachotropis rostrata Chevreux. Rés. C'amp. Sci. Honaco, vol. 90. 1935. 1. 110 (2 specimens, sex?).

Occurrence:
 including 6 of with marsupium, ahont 10 mm , very defective.
$61^{\circ} 15^{\prime} \mathrm{N}, 99^{\circ} 35^{\prime} \mathrm{II}, 900 \mathrm{~m}$. "Thor" St. 99: 22- $\mathrm{V}^{\prime}-1904$. About 10 specimens, including 20 with large, but empty marsupium, 11 mm , very defective.

Remarks on ob. Like Bowner 1 have not found accessory flamellum, though it is present in 7 (see below) ; on the whole the few ôob seem to agree well with Bonnier I. c. and Pesta l. c. The oral parts were not dissected ont.

Remarks on 우. As no \circ is described in the literature, I give some remarks and some figures of this sex.

千 10 mm , very defective. Antenna 1 as long as head + mesosome: first joint of peduncle rather stout: length ratio of joints in pedmele: 3:2:1; upper edge of second joint has about 12. third joint has 5 ealceoli. There is a little, bud-like accessory

Hagellum. Flagelum, in length equal to peduncle, has about 11 joints. Antenna 2 a trifle longer than antenna 1, the two distal joints in peduncle somewhat equal in length and calceoliferous along upper efge; flagellum in length $2 / 3$ of peduncle, 12 -articulate. Hands of pereiopods 1-2 more stout than drawn by Bonnier (1896, fig. 2 n) and Pesta (1920, fig. 7 d). Perciopods 3-7 more or less defective; 1 give figures of side-plates 3-7 and of basal parts of perciopods 57 , of which Bonster has description Lut no figures. Uropods 1-3 do no differ from ot.

Distribution. $44^{\circ} 17^{\prime} \mathrm{N}, 4^{\circ} 38^{\prime} \mathrm{W}, 950 \mathrm{~m}$, clay (type-locality: Bonnier 1896). $48^{\circ} 07^{\prime} 5 \mathrm{~N}, 8^{\circ} 13^{\prime} \mathrm{W}$, about 450 m , fine sand (Sexton 1909). $33^{\circ} 59^{\prime} 30^{\prime \prime} \mathrm{N}, 8^{\circ} 12^{\prime} 15^{\prime \prime} \mathrm{W}, 851 \mathrm{~m}$, red clayish sand with (ilohigerina (Chevreux 1935). Adria $42^{\circ} 11^{\prime} \mathrm{N}, 17^{\circ} 51^{\prime} 30^{\prime \prime} \mathrm{E}$, 1216 m (Pesta 1920).

318. Rhachotropis distincta (Holmes).

Gracilipes distincta Holmes, Proc. U. S. Nat. Mus., vol. 35, 1908, p. 529, fig.

Rhachotropis distineta Shoemaker, Contrib. Canad. Biol. Fish., new ser., vol. 5, 1930, p. 98, figs.
It is probably synonymons with
Rhachotropis gracilis Bommier, Ann. Univ. Lyon, vol. 26, 1896, p. 657, pl. 39 fig. 3.

Rhuchotropis gracilis Stebbing, Tierreich, vol. 21, 1906, p. 353.
Rhachotropis gracilis Chevreux, Amphip. Travailleur-Talisman, 1927, p. 97.

Occurrence:

$62^{\circ} 57^{\prime}$ N. $19^{\circ} 58^{\prime}$ W, 957 m . "Thor" St. 166: I4-VII-1903. 1 o with marsupium, about 8 mm .
Remarks. The present specimen is rather defective; antenna 1 and distal joints of pereiopods $4-7$ are entirely missing. It was not dissected; but it seems to agree excellently with Shoemarer's description of R. distincta which is said (Shoemaker l. c., p. 99) to be "either identical or very elosely related" to R. gracilis Bomier.

Distribution. 1. R. distincta. Santa Cruz island, California, about $900-1200 \mathrm{~m}, 1$ q (type-locality; Holmes I. c.). Cabot Strait (south of New Foundland), 378 m , soft mud, I5 specimens (O^{7}, ㅇ) (Shoemarer 1.c.). Off Martha`s Vineyard $39^{\circ} 49^{\prime} \mathrm{N}, 71^{\circ} 25^{\prime} \mathrm{W}$, $400 \mathrm{~m}, 2$ specimens (in the Zool. Mnseum, Copenhagen, kindly presented by U. S. Nat. Mus.).
2. R. gracitis. Bay of Biscay $44^{\circ} 17^{\prime} \mathrm{N}, 4^{\circ} 38^{\prime} \mathrm{W}, 950 \mathrm{~m}$, mud, 17 specimens, and $44^{\circ} 05^{\prime} \mathrm{N}, 4^{\circ} 45^{\prime} \mathrm{W}, 960 \mathrm{~m}$, mud, 4 specimens (type-localities; Bonnier 1. e.). $43^{\circ} 46^{\prime} \mathrm{N}, 4^{\circ} 27^{\prime} \mathrm{W}, 1143 \mathrm{~m}$, mud, 1 specimen (Chevreux l. c.).
319. Rhachotropis faeroensis n. sp. (Fig. 10).

Occurrence:
$61^{\circ} 15^{\prime} \mathrm{N}, 9^{\circ} 35^{\prime} \mathrm{W}, 900 \mathrm{~m}$. "Thor" St. 99: 22-Y-1904. 4 specimens. $61^{\circ} 08^{\prime} \mathrm{N}, 9^{\circ} 28^{\prime} \mathrm{W}, 820 \mathrm{~m}$. "Thor" St. 78: 12-V-1904. 2 specimens.

Description. Rostrum extends to the middle of first joint of antenna 1, slightly curved; lateral lobes of head half as long as rostrum, obtuse. Eyes probably absent. Pereion not carinate, but the three metasome segments and first urosome segment each with a median tooth, second metasome segment besides with two pairs of very small dorso-lateral teeth. Urosome segment 1 in δ^{7}, hut not in φ, with a deep dorsal depression behind a knob. Third epimeral plate evenly rounded, with a few (3-4) small dentieulations. Telson covers the proximal two thirds of the rami of uropod 3 , evenly tapering, cleft for about $1 / 8$ of the length, apices acute.

Antennæ 1-2 in δ^{*} at least as long as head + mesosome (apices lost); accessory flagellim could not be fonnd. Antenna I δ^{*} has in flagellum >22 joints, antenna $2>26$ joints. Antemnæ 1-2 ㅇ are lost. Oral parts but slightly differing from R. helleri (G. O. $S_{\sharp R S}$. Crust. of Norway, vol. 1, 1895, pl. I50), but palp of mandibles a little longer. Pereiopods 1-2 agree fairly well with those of R. rostrate (fig. 9), except that lobe on fifth joint is shorter and broader. On pereiopods 3-4 nothing is noteworthy. Sideplates of pereiopods $5-7$ with hind margin entire, except for a couple of very minute serrations in pereiopod 6 . Pereiopods 5-6, second joint with hind margin entire; in prp. 7 it is faintly serrate, with lower hind corner rounded quadrate; distal parts of prp. 5-7 lost. Uropod 1 slender, rami in length subequal to peduncle, outer ramus a trifle shorter than inner. Uropods 2-3, rami lanceolate; outer ramus in urop. 2 in length $3 / 4$ of inner. Uropod 3, the two rami equal in length.

All the specimens are more or less defective.

This species is rather close to R. paeneglaber Barnard (Ann. S. Afr. Mus., vol. I5, 1916, p. 181, pl. 27 fig. 10). There seem to be the following differences:

	R. papneglaber	R. faeroensis
Metasome segment 2	1 pair of dorso-lateral tepth	2 pairs of very small dorsn-lateral teeth
Metasome segment 3	no dorsal teeth	1 dorsal tooth
Epimeral plate 3	many (according to Barvard's fig. at least about 10) teeth	$3-4$ very small teeth
Telson	cleft for $1 / 3$ of its length	cleft for $1 / 8$ of its length
Pereiopot 7. lower hind corner of second joint	quatrate. somewhat acute	quadrate, somewhat rounded

Family: Lepechinellidæ Schellenberg.

Dorlunellitce Schelleuberg, Mitt. Zool. Mus. Berlin, vol. 11, 1925, p. 205.

Lepechinellider Schellenberg, D. Südpolar-Exped., vol. 18, 1926, p. 344.

Lepechinellite Pirlot, Siboga-Exp., Monogr. 33e, 1933, p. 156.
This fannily is probably (Pirlot 1. c., p. 167) close to the fam. (iammaridue, representing an abyssal hranch of that family; previously Schellenberg and Barnard had placed it near the fam. Atylitep.

Up to 1938 two genera are described.

Key of the genera.
Palp of mandible enormons Paralepechinella Pirlot 1. c., p. 161 (with one sp.: P. longipalpa Pirlot 1. c., p. 161, figs.; Makassar Strait, 1300 m).
Palp of mandible normal Lepechinella Stebbing

Genus: Lepechinella Stebbing.

Lepechinella Stebhiug, Jour. Lim. Soc., Zool., vol. 30, 1908, p. 191. Dorbanella Chevreux, Bull. Inst. Océanogr., Monaco, No. 296, 1914. Lepechinella Pirlot, 1. c. 1933, p. 156 (with lit.).
U_{I} to 1938 six species are described.

K゙eytothe sbereirs

1 a. Sible-plate I apically cleft.
17. Side-plate I not cleft
3.

2 a. Lateral lobe of head produced into two spines
L. velicllcrlergi n. nom. (see below)

2 b. lateral lobe of head not produced into two spines
L, chrysotheras. Stabling (sue lichow).
3 a. No dorsal spines on mesosome segments . . L. eetrata Barnard (1)iscovery Ref)., vol. 5, 1932, p. 186, fig. South Shetlands, 312 m)
3 b . Dorsal spines or teeth on mesosome segments........ i.
4 a. Dorsal spines on metasome segments much longer than those on mesosome segments L. curvispinosa Pirlot (l. c. $1933, p .156$. figs. ; cast of Celebes, 835 m)

4 b. Dorsal spines on metasome segments not much longer than those on mesosome segments
5.

5 a. Lateral lobe of head produced into two spines, in length equal to rostrum I. drygulskyi Schellenherg (l. e. 1926, p. 345, fig.; "Causs"-Station, depth?)

5 b. The under of the two spies on lateral lobe of heal mend longer than rostrum, the lower minute L. schemata
 Bay of Bis way fl $17^{\prime} 30^{\prime \prime} \mathrm{N}$, $\left.512^{\prime} \mathrm{W}, 13 \times() \mathrm{m}\right)$.
320. Lepechinella chrysotheras Ntehbing.
 vol. $30,1308, ~ 15.152, ~ p h, 27$.

Occurrenfor
 about $x \mathrm{~mm}$.
Stebbang had only a single specimen (a ob). I have nothing to add to his description.

Distribution. $59^{\circ} 11^{\prime} \mathrm{N}, 3^{\circ} 0 x^{\prime} \mathrm{W}, 850 \mathrm{~m}, 1 \mathrm{j}$ (type-locality;

321. Lepechinella schellenbergi nom, nov: (Fig. 11).

Lepechinella sp. Shellenlerg. Mitt. Zool. Mas. Berlin, vol. 1], 1925, 1, 206 , fig.

Fig. 11. Leppechinella schellenbergi.

Lepechinella sp. K. Stephensen, Tromso Mus. Skr., vol. 3, 1935-42, 1. 271 (tramslation from sehellexberg 1. c.).

Oceurrence:
$66^{\circ} 35^{\prime} \mathrm{N}, 56^{\circ} 3 \mathrm{~s}^{\prime} \mathrm{W}, 599 \mathrm{~m}, 3^{\circ} 9 . \quad " I n g o l f "$ St. 32: 11-VII-1895. 3 specimens.
$65^{\circ} 16^{\prime} \mathrm{N}, 55^{\circ} 05^{\prime} \mathrm{W}, 682 \mathrm{~m}, 3^{\circ} 6$. "Ingolf" st. 35: 18-111-1895. About 10 specimens.

Remarks. These specimens agree fairly well with Schellenberg l. c. (S. had but a single, rather defective specimen): a few additions or corrections are, however, needed, and I add figures of all appendages except oral parts.

Schellenberg writes: "Integument stark inkrustiert"; but in the "Ingolf"-specimens" it is rather soft. Rostrum of somewhat varying length, equal to or longer than upper spine in lateral lobe of head. Schellenberg writes: "II-IV' Seitenplatte nehmen an Länge gleichmässig ab"; by a miswriting I have (l.c.) written "Increasing in length".

Antenna 1 about as long as mesosome + metasome, antenna 2 about $1 \frac{1}{2}$ times as long. Flagellum in antemna 1 twice as long as peduncle, has about 26 joints. Antenna 2, ultimate joint of peduncle very slender, in both sexes nearly twice as long as penultimate joint; flagellum somewhat longer than ultimate joint of pedunele, has about 20 joints, most of them very long. Oral parts were not dissected ont.

Uropoda (not described by Schellenberg) long, slender, reaching equally far behind. Uropod 1 , rami in length equal to peduncle, in uropod 2 somewhat longer than peduncle, in uropod 3 even 5 times as long as peduncle. Telson somewhat longer than peduncle in uropod 3 , slender, cleft in distal half; either half terminating in a tooth and a long spine.
length up to 7 mm ; Sohellexberg had a single specimen, length without urus 5.5 mm .

There is no sexual difference in antennæ 1-2 and pereiopods 1-2.
1)istribution. North of Spitsbergen $81^{\circ} \mathbf{2} 0^{\prime} \mathbf{N}, 20^{\circ} 30^{\prime} \mathrm{E}$, 1000 m (Schellexberg I. c.).

Family: Gammaridæ Leach.

Garmmarider G. O. Sars, Crust. of Norway, vol. 1, 1895, p. 481. Gammarida Stebbing, Tierreich, vol. 21, 1906, p. 364.

Genus: Melita Leach.

322. Melita richardi Chevreux (Fig. 12).

Melita richardi Chevreux, Rés. Camp. Sci., Monaco, vol. 16, 1900, p. 81 , pl. 10 fig. 3.

Occurrence:
$63^{\circ} 06^{\prime} \mathrm{N}, 56^{\circ} 00^{\prime} \mathrm{W}, 2258 \mathrm{~m}, 2^{\circ}$. "Ingolf" St. 24: 25-VI-1895. 1 specimen, about 6 mm .

$62^{\circ} 10^{\prime} 08^{\prime \prime} \mathrm{N}, 19^{\circ} 36^{\prime} \mathrm{II}, 1900-2150 \mathrm{~m} . \quad$ "Thor" St. 164: 12(13)- I'II1903. 2 specimens, about 6-9 mm.

Remarks. On the whole these specimens agree well with ("hevreux l. c., but are more or less defective; i. a. uropod 3 is lost in all the specimens.

The largest specimen is probably ㅇ (pereiopod 2 !; see Chevreux 1. e., fig. 2c), but I have found no marsupial plates. It differs from Chevretx l.e. in the following details: second joint in pereiopods $5-7$ is broader; epimeral plates of metasome segments 1 and 2 have lower hind corner reetangular (aceording to Chevreur plate I is "arrondi", plate 2 is "légèrement prolongé et aigue""), that of segment 3 is denticulate not only in upper edge, but especially along under edge. Urosome segment I has 3 dorsal teeth (not one), the eentral of which is the largest; also urosome segment 2 has dorsally 3 teeth, +2 spines (Chevreux writes "cinq petites dents" "). Uropod 1 has a stout spine at proximal fourth of peduncle.

Distrilution. $38^{\circ} 34^{\prime} 30^{\prime \prime} \mathrm{N}, 30^{\circ} 26^{\prime} 30^{\prime \prime} \mathrm{W}, 1287 \mathrm{~m}$, fine sand, 28 specimens (type-loeality), and $38^{\circ} 38^{\prime} \mathrm{N}, 30^{\circ} 28^{\prime} 15^{\prime \prime} \mathrm{W}, 620 \mathrm{~m}$, sand and gravel, I specimen (Chevreux l.c.). $39^{\circ} 21^{\prime} 20^{\prime \prime} \mathrm{N}$, $31^{\circ} 05^{\prime} 53^{\prime \prime} \mathrm{W}, 1360 \mathrm{~m} ; 39^{\circ} 21^{\prime} 20^{\prime \prime} \mathrm{N}, 31^{\circ} 05^{\prime} 45^{\prime \prime} \mathrm{W}, 1360 \mathrm{~m} ; 37^{\circ} 39^{\prime} \mathrm{N}$, $25^{\circ} 17^{\prime} 45^{\prime \prime} \mathrm{W}^{\prime}, 1230 \mathrm{~m} ; 38^{\circ} 17^{\prime} \mathrm{N}, 30^{\circ} 16^{\prime} \mathrm{W}, 1331 \mathrm{~m}$ (Chevreux, Rés. Camp. sci.. Monaco, vol. 30, 1935, p. I15).
323. Melita abyssorum 1. sp. (Figs. I3-11).

Oceurrence:
$63^{\circ} 46^{\prime} \mathrm{N}, 56^{\circ} 00^{\prime} \mathrm{W}, 225 \mathrm{~S}^{\mathrm{m}} \mathrm{m}, 24$. "Ingolf" St. 24: 25-VI-I895.
About 10 specimens (f; no o^{-1}), length up to about 25 mm .
Description of f with empty marsupium, 25 mm . Back rounded; all segments entirely smooth, but urosome segment 1 with one small dorsal tooth, segment 2 with one pair of rlorsolateral teeth. Hearl, lateral lobe rounded, very little protruding; post-antennal corner rectangular. Eyes entirely missing. Antenna 1 nearly as long as body; first joint with two hairs on under edge; second joint in length equal to first joint, but more slender, with a few hairs on upper edge; third joint about ${ }^{1 / 3}$ the length of second joint. Flagellum twice as long as perduncle, with about 45 joints. Aecessory Hagellum 5 -articulate, as long as three first joints of flagellum. Antenna 2 half the leagth of antenna 1 , the two distal joints of peduncle suhequal in length; flagellum half the length of perluncle, about 12 -jointed. Oral parts not essentially different from M. palmata (G. O. Sars, Crust. of Norway, vol. 1,

1895, pl. 179), but mambithes have paly moth more slember, with lirst joint longer, and with much fewer setie, about as in $1 /$. oh-
 with 13 I. maryinal stat.

P'ereiopods 13 , side plates somewhat oval, Nos. 1 e each with a small tooth on lower hind cormer; side-plate of pereioporl 1

Croporl 3 a little shortor than arop. I, onter ramus over twice the lomsth of perlanele, immer ramas very short. Telson half as
 spilas matr atex.

This spertes is charamerised by the combination of the followbug essentials: nereyes; metasome segments smonth, but one (lorsal

Fig. 13. Melita abyssorum 우. $1 / x .1=$ inner plate nif maxilla 1.
much broader. breadth nearly equal to Aepth. Pereioporl 1, 5th joint about $1^{1 / 3}$ times the length of 6th joint; Bth joint oval, palm oblique, rot defined from unler edge; finger acnte. Pereiojod 2 much stronger. 5th joint broad, 6th joint still broader, a little longer than 5 th joint, with parallel edges; palm oblique. dentate. angular near finger hinge, defined by a tooth-like process: finger large, curved, acute. Pereiopods 3 t have rather long hairs on 5 th and 6th joints, fingers short. Pereiopods 5-7 increasing in length from prp. 5 to jrj. 7 : second joint large, oblong oval. hind margin finely serrate and in prp. 7 a little eoncave in lower hall: lower hind comers sub-rectangular. Epimeral plate 1 rounded belind; No. 2 rounded. with a minute tooth on lower hind corner: No. 3 acntely produced.

Uropods 1 and 2 reaching equally far back. UTropod 1 , peduncle has in the middle of underside a hump with a spine, and ends in a large dentiform process: the two rami equal in length, as long as peduncle. Urop. 2, outer ramus a trifle shorter than inner.
tooth on urosome segment 1 , and two sub-dorsal teeth on urosome segment 2 ; a spine in the middle of muterside of peduncte of aropod 1. Besides it is found at much greater id pth than any other speeies of the gemus, except M. richurti.

One of the large of had in marsupium a rhizocephalid(?) parasite, globular, about 4 mm in diameter.

324. Melita dentata (Kiroyer).

Melita dentata G. O. Sars, Crust. of Norway, vol. 1, 1895.]. 513. pl. 181 fig. 1.
Melita dentata Stehbing, Tierreich, vol. 1, 1906, 1. 427.
Oceurrenee:
$78^{\circ} 1 t^{\prime} \mathrm{N}, 74^{\circ} 20^{\prime} \mathrm{W}, 672 \mathrm{~m}, \div 0^{\circ} 5$. "(rodthaab" St. 99: 8-V1II1928 (K. Stephensen, Meddel. om Gronl. vol. 79, No. 7. 1933, p. 43).

Distribution. Widely distributed in the northern Atlantic with adjacent arctic seas, etc., usually in the littoral-sublittoral zones. It has never before beeu recorded from depths so great as that cited above. For special localities, see K. Stephensen, Tromso Mus. Skr., vol. 3, 1935-42, p. 307.

Fig. 14. Melita abyssormm.
Genus: Ceradocus Costa.
Ceradocus Stebbing, Tierreich, vol. 21, 1906, p. 430.

325. Ceradocus torelli (Goës).

Cerulocus torelli Stebbing 1. c., p. 432.
Ceradocus torelli Briiggen, Mem. Acad. Sci., St.-Pétersbourg, sér. S, vol. 18, 1909, p. 3s, pl. 1 fig. 4.
Ceradocus torelli K. Stephensen, Zool. of Iceland, vol. 3, No. 26, 1940. p. 54.

Oceurrence:
West Greenland: Amerdlokfjord near Holsteinsborg, $350-500 \mathrm{~m}$, numerous specimens (K. Stephensen l.c.).

Distribution. From West Greenland (see above) to Bering or Okhotsk Sea, depths usually $24-240 \mathrm{~m}$. An aretic species. For special loealities see K. Stephensen, Tromso Mus. Skr., vol. 3, 1935-42, р. 310.

326. Ceradocus baffini K. Stephensen.

Ceradocus baffini K. Stephensen, Meddel. om Groul., vol. 79, No. 7, 1930, p. 43, figs.

Ocenrrence:
Baffin Bay $67^{\circ} 48^{\prime} \mathrm{N}, 60^{\circ} 46^{\prime} \mathrm{W}, 1600 \mathrm{~m}$, temp. ?. "Godthaab" St. 162 (type-locality; K. Stephensen l.c.).

Not found anywhere else.

Family: Aoridæ Stelbing.

Photide (in parte) G. O. Sars, Crust. of Norway, vol. 1, 1895, pp. 539-551 (not pp. 551-577).
Aoridar Stebbing, Tierreich, vol. 21, 1906, p. 585.

Genus: Aora Kroyer.

327. Aora typica Kroyer.

Aora gracilis G. O. Sars 1. e., p. 545, pl. 193.
Aora gracilis Stebbing l. c., p. 587.
Oecurrence:
$63^{\circ} 30^{\prime} \mathrm{N}, 54^{\circ} 25^{\prime} \mathrm{W}, 1096 \mathrm{~m}, 3^{\circ} 3$. "Ingolf" St. 25: 26-VI-1895. 2 ㅇ, defective.
Hitherto it was not found at so great a depth, and it is not known from Greenland, Iceland, or the Faroes.

Distribution. Very widely distributed in nearly all seas except the Arctic and Antaretic areas, see Chevreux \& Fage, Faune de France, vol. 9, 1925, p. 293.

Genus: Lembos Bate.

Autonoë G. O. Sars, Crust. of Norway, vol. 1, 1895, p. 540. Lembos Stebbing, Tierreich, vol. 21, 1906, p. 594.
328. Lembos (longidigitans (Bonnier)?) (Fig. 15).

Autonoë longidigitans Bonnier, Anm. Univ. Lyon, 1896, p. 659, pl. 40 fig. 1.
Lembos longidigitans Stebbing I. c., p. 595.
Occurrence:
$63^{\circ} 30^{\prime} \mathrm{N}, 54^{\circ} 25^{\prime} \mathrm{W}, 1096 \mathrm{~m}, 3{ }^{\circ} 3$. "Ingolf" St. 25: 26-VI-1895. 3 specimens about $4-6 \mathrm{~mm}$.

Remarks. With some douht I have referred these specimens to Bonnter's species, i. a. because of the absence of eyes, and the very long dactyli on pereiopods $3-4$, almost as long as the preceding joints. All the specimens are probably of (they have no marsupial plates).

But they do not agree entirely with Bonnter's deseription and figures; the disagreements are as follows: lateral lobes of head oval, projecting, not "not at all prominent". Antenna 1 (lost in Bonnier's specimeu) about as long as mesosome + metasome; first joint in length equal to head, second joint a trifle longer, but more slender, and thrice as long as third joint; flagellum abont twice the length of peduncle, with about 23 joints. Accessory flagellum 3-articulate. Antenna 2 (lost in Bonnier's specimen) half as long as antenna 1 ; the two distal joints of peduncle subequal in length, flagellum half as long as peduncle, with about 8 joints. Oral parts were not dissected out, but seem to agree with Bonnier's figures. Pereiopod 1 not as heavy as in Bonnier's fig. 11; second and 5th joints more slender, but hand and finger agree with Bonnier's specimen; there is a strong spine a little behind the tooth on the palm (not mentioned by Bonnier). Pereiopods 2-4 agree with Bonnier, but dactyli in prp. 3-4 a trifle shorter than the preceding joints, not "exactement de même longueur que le propodite"; prp. 3-4 are entirely abke; side-plate of prop. 4 almost quadrate. Prp. $5-7$ have second joint much narrower than in Bonnier's figure (B. writes "les hasipodites élargis et ovulaires"); dactylus in prp. 6 two thirds the length of metacarpus, in prp. 7 not half as long as metacarpus. Epimeral plates of metasome segments $1-3$ rounded, in segment 3 not as protruding as in B.'s figure. Uropods 1-3 and telson seem (without dissection) to agree with Bonnier I. c.

Distribution. $44^{\circ} 17^{\prime} \mathrm{N}, 4^{\circ} 38^{\prime} \mathrm{W}, 950 \mathrm{~m}$, mud (type-locality; Bonnier l.c.).

Fig. 15. Lembos (longidigituns?). l'ereiopod 7 is from the small sperimen.

Family: Photidæ Boeck.

Photider (in parte) G. O. Sars, Crust. of Norway, vol. 1, 1895, pp. 551-577 (non 1pp. 538-551).
Photider Stebbing, Tierreich, vol. 21, 1906, p. 603.

Genus: Photis Krover

329. Photis reinhardti Kroyer.

Photis reinhardi G. O. Sars 1. c., p. 569, pl. 202.
Photis reinhardi Stebbing l. c., p. 607.
Occurrence:
$64^{\circ} 07^{\prime} \mathrm{N}, 11^{\circ} 12^{\prime} \mathrm{W}, 446 \mathrm{~m}, 2^{\circ} 5$. "Thgolf" St. 4: 13-11-1895. 1 ô juv.
$65^{\circ} 16^{\prime} \mathrm{N}, 55^{\circ} 42^{\prime} \mathrm{W}, 791 \mathrm{~m}, 3^{\circ} 5$. "Ingolf" St. 28: 1-V11-1895. 1 o. $64^{\circ} 44^{\prime} \mathrm{N}, 32^{\circ} 52^{\prime} \mathrm{W}, 1838 \mathrm{~m}, \mathrm{l}^{\circ} 4$. "Ingolf" St. $92: 25$ - $\mathrm{V}^{\prime} \mathrm{I}-1896.1 \mathrm{o}$.

Though these specimens are secured at extraordinary great depth (- the msual depths are $10-100(200) \mathrm{m}-$), they agree well with Sars's figures.

Distribution. Widely distributed in the northern Atlantic with adjacent arctic waters, etc. For special localities see K. Stephensen, Tromso Mus. Skr., vol. 3, 1935-42, p. 369.

Genus: Eurystheus Bate.

Gammaropsis (., O. Sars, Crust. of Norway, vol. 1, 1895, p. 557. Eurystheus Stebbing, Tierreich, vol. 21, 1906, p. 610.
330. Eurystheus abyssalis 11. sp. (Fig. 16).

Ocenrence:

$61^{\circ} 15^{\prime} \mathrm{N}, 9^{\circ} 55^{\prime} \mathrm{W}, 900 \mathrm{~m}$. "Thor" St. 99: 22-V'-1904. 2 specimens (${ }^{\top}$), about 6 mm .

Description of ${ }^{\circ}, 6 \mathrm{~mm}$ (q nnknown). Head as long as the two first segments combined, with lateral lobes acute, as in E. melanops (G. O. Sars l. c., pl. 199.1 C). Dorsal side of body rounded, not dentate, except on metasome segments 1-2 (sce below). Eyes small, round, colourless. Antemna 1, second and third joints subequal in length; flagellum has >8 joints (apex lost); accessory flagellum 4-articulate. Antenna 2 as long as mesosome; relative lengths of joints as in E. melanops (Sars l. c.); flagellum 11-articulate. Oral parts were not dissected ont; epistome has no acute process. Pereiopod 1, side-plate oval, apically broader, 5th joint about 1^{1} times as long as 6 th joint which is ovate, with the slightly convex palm not defined from hind margin; dactylns in length $2 / 3$ of 6th joint. Perciopod 2, side-plate as deep as the corresponding segment, with edges almost parallel, and comers evenly ronnded; 6th joint twice as long as 5 th, with edges almost parallel, palm oblique, with two truncate teeth separated by a rather deep notch; dactylus rather strong and curved. As regards pereiopods 3-4 nothing is noteworthr. Pereiopods 5-7, second joints very broad, broadest and oval in prp. 5 , narrowest (length twice breadth) and with edges almost parallel in prp. 7; hind margins of second joints in prp. 5-7 denticulate, lower hind corners somewhat rectangular. Epimeral plate of metasome segment 1 rounded, in segment 2 rounded with a small tooth, in segment 3 with a larger tooth. Urosome segment 1 on hindmargin with one medio-dorsal tooth with a spine on either side, and one pair o

Fig. 16. Eurystheus abyssalis ō.
dorso-lateral teeth; uros. segment 2 with one pair of medio-dorsal teeth and one pair of dorsal spines. Uropod 1, rami in length somewhat equal to peduncle. Uropod 2, rami somewhat longer than pedumele; inner ramus somewhat longer than outer. Uropod 3, rami in length nearly equal to pedmele, apically tapering. Telson about as broad as it is long, with edges almost parallel. but with apex triangular, and with a pair of dorsal spines, but no hairs.

Affinities. The present species is characterized mainly by the hand of pereiopod 2 , and by the presence of teeth on the urosome segments. viz., 3 on segment 1 and 2 on segment 2 .

A few species have pereiopod 2 not very different from the present species, hut with urosome segments dorsally smooth. They are as follows:
E. eurypodii Barnard, Discovery Report, vol. 5, 1932, p. 231, fig. (Falklands). Differs in having defining angle of palm in pereiopod 2 minute eremulated and rounded.
?E. scissimanus Barnard, Amn. S. Afr. Mus, vol. 20, 1925. p. 361. pl. 34 fig. 15 (South Afriea, 230 m).
Several other species have, like these, two teeth on palm of pereiopod $2 \hat{3}$, hut shape and size of the two teeth are rather different from those of E. abyssalis.

The following species have dorsal teeth on urosome segments 1 and 2:
E. anomalus ('herreux, Bull. Soc. Zool. France, vol. 50, 1925, p. 381 (Senegal). $1+1$ tecth 1).
E. crassipes (Haswell) Stebbing. Tierwelt, vol. 21, 1906, p. 612 (East Australia). $3+0$ teeth ${ }^{1}$).
E. dentatus (Chevteux). Gammaropsis dentata Cherrenx, Rés. Camp. Sci. Monaco, rol. 16,1900 , p. 93, pl. 12 fig. 1 (Azores). $3+$ 2 teeth.
$\left.{ }^{1}\right) 1+1$ teeth $=1$ tooth on urosome segment 1,1 tooth on segment $2-3+11$ teeth $=3$ teeth on urosome segment 1 , 0 on seg-
E. dimorphus Barnard, Diseovery Repr, vol. 5, 1932, p. 244, figs. (South Georgia). "Three to four dentieles on hind margin of pleon segments 4 and 5 dorso-laterally".
E. holmesi Stebbing, Ann. S. Afr. Mus., vol. 6. 1908, p. 85, pl. 40 A (South Africa). $3+2$ teeth.
E. longitarsus Schellenberg, Further Results Swed. Antaret. Exped. 1901-1903 (O. Nordenskiöld, edit. hy Sixten Bock), vol.2, No. 6, Stockh. 1931. p. 242. figs. (Falkland 18.). $2+4$ teeth.
E. lophomeria Barnard. John Murray Exped., vol. 4, No. 6, 1937, p. 166, figs. (South Arabian coast). $3+2$ teeth.
E. ostroumoui (Sowinsky). Chevrens \& Fage, Fanne de France, rol. 9, 1925, p. 311, figs. (Mediterranean). $1+1$ teetl.
E. semidentatus Barnard, Amm. S. Afr. Mus, vol. 15, 1916, p. 250, pl. 18 figs. 13-14 (Sonth Africa). $3+2$ teeth.
E. serrierus Barnard, Discovery Rep., vol. 5, 1932, p. 228, figs. (South (ieorgia and South Shetland). $2+2$ teeth.
E. tenuicornis (Holmes). Shoemaker, I'roe. U. S. Nat. Mus., vol. 78, art. 18, 1931, p.5. figs. (California). $2+2$ teeth.
E. thompsoni (Stebbing). Gammaropsis 1 . Stebhing, ChallengerExped., vol. 29, 1888, p. 1103, pl. 115 (east of New Zealand, 2000 m ?) (6 not known)) : $1(+2$ small $)+0$ teeth.
According to the above the following four species have the same number of dorsal teeth on the two anterior urosome segments, viz., 3 on segment 1 . and 2 on segment 2 ; but in other essentials they are rery different from E. abyssalis. The four species are:
E. dentatus: side-plate of pereiopod 1 dentate below: pereiopod $2 \sigma^{5}$: paim tridentate.
E. holmesi: pereiopod 2 most different; prp. 5: 5th joint broader, with deep incision in the middle of hind margin.
E. lophomeria: pereiopod 2 most different: prp. 7: second joint with strong teeth on fore margin.
E. semidentatus: pereiopod 2 most different; prp. 7: second joint with strong teeth on fore margin (in ô).

Distribution. E. abyssalis is not fomm outside the locality recorded ahove, and as far as I am awame, it is fommed in greater depthe than any other species of the graus.

Gemus: Bathyphotis 11. gen.

liead, lateral kobes moderately produced, post-intomat corner well marked. Side-plates $1-1$ rather derpe and lowod, increasing in length from first to foumth, the with fromtlobe short. Antennex

I-2 rather mongatr, subagual in hongh; acressory flagellan well developed. Oral parts mormal. I jpere lip sub-symmetrical, distal mamgin ronndmi, with a molian noth; lower lip with inner lobes atall aronto mandibular procomos. Nandibles normal: palp 3-articulate, very long. Maxilla 1 , imer plate makeit?), whter plate with I phines: palp iwo-jointed. with 3 hoory spines and is rather stometer spines. Maxilat 2, outer flate Whe broader; both of the

Fir. 17. Bath!yphotis tridentatu o ${ }^{*}$.

Fig. 18. Bathyphetis tridentatn ô.
and broad. Uropods 1-2 normal; uropod 3, rami narrow, acnte, equal in length and brealth. Telson entire, sub-pentagonal, with apex triangular and somewhat projecting.

This genus is rather close to Eurystheus, but differs in having very few heary spines on maxilla 1 (4 on outer plate, 3 on palp; Eurysthcus has several spines); the very deep side-plate of pereiopod 4, and the very broad and almost circular gills (in Eurystheus ther are narrow).

331. Bathyphotis tridentata n. sp. (Figs. 17-18)

Occurrence:
$63^{\circ} 30^{\prime} \mathrm{N}, 54^{\circ} 25^{\prime} \mathrm{W}$, $1096 \mathrm{~m}, 3^{\circ} 3$. "Ingolf" St. $25: 26$-VI-1895. 1 ô.
Description of 0.10 mm in length (q is manown). Body rather slender. with hack evenly rounded (but there are teeth on urosomesegment 1 , see below). Head about as long as the two first segments combined. lateral lobes rectangular. Eyes large, round entirely colourless (in spirits). Antemne $1-2$ subequal in length, as long as head + mesosome. Antenna 1 , the two distal joints of peduncle suhequal in length, flagellum a little shorter than these two joints, 14 -articulate; accessory flagellum has 7 joints including a minute apical joint. Antenna 2, the two distal joints of peduncle subequal in length; flagellum somewhat longer than ultimate joint, 1l-articulate. Upper lip has no epistomal projection.

Pereiopod 1, side-plate has lower forecorner somewhat acute; 5 th juint longer than fith, hroad, with hind margin convex: 6th joint not broader than 5 th; palm smooth, oblique, and in length two thirds of hind margin; dactylns rather slender. Pereiopod 2, side-plate has length $=$ breadth; foremargin evenly curved, hindmargin straight: second joint broad: 5th joint cup-shaped; 6th joint oval, very broad. in length $=$ second to 5 th joints combined; palm about half as long as 6th joint, with two teeth + a defining tooth; dactylus stout. Pereiopods 3-4 suhequal in length: prp. 3, side-plate deeper than side-plate 2, foremargin eveuly curved, hindmargin straight; side-plate 4 still deeper than side-plate 3 foremargin curved, hindmargiu a little concave. Pereiopod 5 about $2 / 3$ times longer than prp. $3-4$; side-plate with front lobe short; second joint broad, with hindmargin straight and lower hind corner rounded-quadrangular; fourth joint very broad, over half the hreadth of second joint, with the edges almost parallel and lower hind corner projecting: 5th joint broad. Pereionods 6-7 subequal hoth in shape and length, somewhat longer than prp. 5 . Pereiopod 6, side-plate has a very short frontlobe; second joint rather large and lamellar, but much narrower than in prp. 5 , with the edges almost parallel, and lower hiud corner suh-rectangular; upper hind corner in second joint in prp. 6 rounded, in prp. 7 rectangular; the following joints not broad.

Epimeral plates of metasome, lower hind corners rounded. Urosome segment 1 has on hindmargin one medio-dorsal tooth and one pair of somewhat longer dorso-lateral teeth. Urosome segment 2 dorsally smooth. Uropod 1, rami subequal in length, and in leagth $=$ peduncle, which ends in a spine. Uropod 2 rather similar to urop. 1, but shorter. Uropod 3, rami subequal in length, half as long as perluncle. Telson about as hroad as it is long, terminating in a triangular projection, with one jair of dorsal spines.

Genus: Bonnierella Cherreux.

Bonmicrella Chevreux. Rés. ('amp. Sci. Monaco, vol. 16, 1900, p. 97.
332. Bonnierella abyssi (Chevtenx).

Podoceropsis abyssi ('hevreux. Bull. Soc. Zool. Frimce, vol. 12, 1887, р. 577.

Bonnierella abyssi Cherreux, l. e. 1900, p. 97, pl. 11 fig. 3 (ढै).
Podoceropsis abyssi (in parte) Stebbing, Tierreich, vol. 21, 1906, p. 619.

Podoceropsis abyssi ('herrenx, Amphip., Travailleur et Talisman, 1927, p. 115, pl. 10 figs. 21-24 (子).
Occurrence:
$61^{\circ} 15^{\prime} \mathrm{N}, 9^{\circ} 35^{\prime}$ IV, $900 \mathrm{~m} . \quad$ "Thor" St. 99: 22-\-1904. 2 \& with marsupium, abont 3 mm .
These specimens have lost antennæ and pereiopods 3-7; but the very characteristic pereiopods 2 agree excellently with Chevreux's figure (Chevreux 1927, pl. 10 fig. 22).

Stebbing (l.c.) considers it synonymons with Gammaropsis abyssorum Bonnier 1896; but though closely allied the two species are not identic (Chevreus 1927, p. 116).

Distribution. Near Cape Finisterre $43^{\circ} 12^{\prime} 50^{\prime \prime}\left(15^{\prime \prime}\right) \mathrm{N}, 11^{\circ} 51^{\prime}-$ $11^{\circ} 53^{\prime} 30^{\prime \prime} \mathrm{W} .363-510 \mathrm{~m}$, mud (type-locality; Chevreux 1900). Argwin bank $21^{\circ} 53^{\prime} \mathrm{N} .19^{\circ} 50^{\prime} \mathrm{W} .655 \mathrm{~m}$, greenish clayish sand (Chevreux 1927).

Genus: Podoceropsis Boeck.

333. Podoceropsis nitida (Stimpson).

Porloccropsis excarata G. O. Sars, C'rust. of Norway, vol. 1, 1895. p. $576, \mathrm{pl} .205$

Podoceropsis nitida stebbing, Tierreich. vol. 21, 1906, 1. 620
Podoceropsis mitida Chevreus \& Fage. Fanne de France, vol. 9 1925 , p. 317, figs.

Occurrence:
$63^{\circ} 06^{\prime} \mathrm{N}, 56^{\circ} 00^{\prime} \mathrm{W}, 2258 \mathrm{~m}, 2^{\circ} 4$. "Ingolf" St. 24: 25-YT-1895 2 young specimens (0^{*} ?), 2 mm .
$60^{\circ} 07^{\prime} \mathrm{N}, 3^{\circ} 42^{\prime} \mathrm{E} .360 \mathrm{~m}, 6^{\circ} 12$. " لllichael Sars" 1902 , Ad. S. Jensen. 1 すै.
$61^{\circ} 15^{\prime} \mathrm{N}, 9^{\circ} 35^{\prime} \mathrm{H}, 900 \mathrm{~m} .{ }^{\top} T h o r "$ Nit. $99: 22-\mathrm{V}-1904.1$ T.
$61^{\circ} 07^{\prime} \mathrm{N}, 9^{\circ} 30^{\prime} \mathrm{H}, 835 \mathrm{~m}$. "Thor" st. 78: 12- $\mathrm{I}^{+}-1904.3 \mathrm{o}^{\top}$
$65^{\circ} 30^{\prime} \mathrm{N}, 55^{\circ} 26^{\prime} \mathrm{W}, 550 \mathrm{~m}, 4^{\circ} 5$. Sand, stones. Wandel 1889.19.
Remarks. The of from the "Thor" and the "Michael Sars" are typical. The two small "Ingolf"-specimens (o"?; chele of pereiopod 2 !) are somewhat defective (antenne 1-2 and pereiopods $5-7$ lost), but seem to agree well with SARs's figures, except that dactyli of pereiopods $3-1$ are rather long, as long as 6 th joint.

Distribution. Northern Atlantic, from northeastern U.S.A. to northeru Norway and the English Channel, rarely deeper than 100 m . For special localities see K. Sterhensen, Tromso Mus Skr., vol. 3, 1935-42, p. 373.

Genus: Protomedeia Kroyer.

334. Protomedeia fasciata Kroyer?

Protomedeia fuseiata, (. O. Sars, Crust. of Normar, vol. 1, 1895, p. 552, pl. 196.

Protomedeia fasciata Stebbing, Tierreieb, vol. 21, 1906, p. 623.
Protomedeia fasciata Ǩ. Stephensen, Tromso Mus. Skr., Vol. 3, 1935-42, 1. 376, figs. Occurence:
$63^{\circ} 30^{\prime} \mathrm{N} .54^{\circ} 25^{\prime} \mathrm{N}, 1096 \mathrm{~m}, 3^{\circ} 3$. "Ingolf" St. 25: 26-\I-1895. 1 ㅇ juv. (no marsupium), about 4 mm .

The rletermination is possibly not quite certain; but pereiopods 3-4 and uropod 3 seem to agree with SARS 1.c.

Distribution. Widely distributed in the northern Atlantic with adjacent arctic seas in the littoral and sublittoral zones. For special localities, see K. stephensen l. c.

Family: Jassidx stobling

I'odoceride' (in parte) (i. O. Sars, Crust. of Norway, bol. 1, 1se95, Pp. 587-600 (not pp. 578-587 and 001-606).
Jassider Stehbing. 'Tierreich, vol. 21, 1906, p. 617.
Jasiside Chevenx \& Fage, Fame de France, rol. 3, 1925, p. 313.

Genus: Ischyrocerus Kirnyrr.

Ischyrocerus G. O. Sums, I. c., p. $5 \times$.
Ischyrocerus Stehhing. I. c., p. 657.
 flagedlan mot describerl.
 sory flagellum two-jointed", lout length mot moted.
 flayellum quite rudimentary".

 $>1: 1$.

figr 19. Ischyrocerus mmoides 7 , one of llaxisex's type specimens.

As the length of accessory llagellum is a rather important specific character, l give the length ratio of accessory flagellum and first joint of flagellum in all species of the genus, established uj) to 1940 (according to Zool. Record. including the volunte for 1940).
I. anguipes Kr. (incl. I. mimutus (*. O. Sars). Stelobing, l. e. 1906, p. 658; 2:3.

1. assimilis (G. O. Sars), present paper 1. 31, species no. 339; 1:3.
I. brevicormis (G. O. Sars), present paper p. 32. species no. 341:1:1.
2. brusilovi Gurjanova, present paper p. 32, species no. 342; 1:2.
I. carimatus Barnard. Ann. S. Afr. Mns.. vol. 15. 1916. p. 266, fig.; 1:2.
I. commensalis Chevreux, present paper p. 28. species no.337; 1:1
3. cristatus Gurjanowa, Rep. Japan Sea Hydrobiol. Exped. of the Zool. Inst. Acad. Sci. U.S.S.R. in 1934, pt. 1. 1938, pp. 366. 403 , figs.: "accessory fla gellum 2-jointed", hut length not noted.
I. clongatus Gurjanova, 1. e. 1938, pp. 370, 4(14, figs.; "accessory" flagellum 2-jointed". lut length not noted.
I. enigmaticus Gurjanova, \%ool. Anz., vol. 108, 1934. p. 128, fig.: $1: 1$.
I. gorgonice Barnard. Anu. S. Afr. Mus., vol, 32, 1940, p. 481, fig.: I have not had access to this paper.
I. hanseni n. sp., present paper p. 28, species no. 336: 1:1.
4. hocki (Stebling). ? = I. brusilovi (see above).
I. latipes Kroyer, Stebling 1. c. 1906 , p. 660; 1:2.
I. meyncheir (Boeck), present paper p. 29, species no. 33s: 1:1 or $>1: 1$.
I. megalops G. O. Sars present paper 1. 32, species no. 310; 1:3.
5. mimutus G. O. Sars. see I. (enguipes (above).
I. nanoides (H.J. Hansen), present paper p. 27 species no. 335 ; 1:2.
6. pachtusori Gurjanova, \%ool. Anz., vol. 103, 1933, p. 126, and

I. Uutwoulutus (Hoek). $!=$. brusilori (seo above) $<1: 2$.
7. Ischyrocerus nanoides (11. J. Hanseu) (Fig. 19).

Podocerus manoides H. J. Hansen, Vid. Medil. 1887, p. 162, pl. 6 figs 4-4h.
Ischymeceres monoides Sitehbing. 'Tirreich, vol. 21, 1906. p. 657.
Ischyrocerus nanoides Schellenberg, Mitt. Zool. Mus. Berlin, vol.11, 1925. p. 209.

Oceurrence:
 1 specimen (sex?), 3 mm , very defective, and the determination therefore not eertain. Antenne $1: 2$ and pereiopods $5-7$ are lost. lont mooped 3 is of the typieal form.

Remarks. In the Zoological Dnsemn. ('openhagen, we have one of Il. J. Maxsex's two type specimens, a $f+$ mm. I have dissected out some of the appendages and compared them with Hansen:s deseription and figures. On the whole they agree well with 1. l. c.. but some additions should he marle (H. had only very fow figures, viz., a specimen in lateral view, pereiopod 2 , and urosome + epimeral plate 3). Antenna 1. flagellum has 6 (not 7-8) joints: accessory flagellum half as long as first joint iu Alagellum, not longer than first joint (II. J. Haveen writes: "articulo prino flagelli longius"). Palm in pereiopod 1 defined by two spines, in pereiopod 2 defined by three spines (Hansen: (prp. 1-2) "fd apicem posteriorem spins duabus minorihus armata"). Pereiopod 5 . second joint pearshaped-oval. broader thau in prp. 6 ; prp. 7 lost. Tropod 3. petuncle has probably but two spines: inner ramus has one spine near the middle.

It will be seen that this specimen differs from H. J. Haxsen
l. c. mainly in the accessory flagellum being not longer than first joint of flagellnm, but only half as long,

A male, 5.5 mm , was described by Schelefenerg l. e., but without figures.

Distribution. Baffin Bay $71^{\circ} 10^{\prime} \mathrm{N}, 58^{\circ} 56^{\prime} \mathrm{W}, 400 \mathrm{~m}$, clay (type-locality: H. J. Hansen l. c.). West Greenland $66^{\circ} 35^{\prime}$ N, $55^{\circ} 54^{\prime} \mathrm{N}, 166 \mathrm{~m}, 1^{\circ} 6$ ("Ingolf" St. 31: 11-V'11-1895), 1 ovigerous of 4 mul, defective (antenna 1 and perciopods 5-7 lost, lut uropod 3
longer than prp. $1 ; 6$ th joint oral, with finger closing up on inner surface; palm near finger hinge with a triangular process, then follows a notch; palm defined ly three spines on inner side of hand. Pereiopods 3-4 rather slender. Pereiopods 5-6 (7 is lost) increasing in length, with second joints very narrow, over twice as long as they are broad. and fingers long. Epimeral plate 3, lower hind corner romded. Uropod 1, rami equal in length and a trifle shorter than pednncle; outer ramus naked, inner ramus with a spine near the middle. Uropod 2, inner ramus as long as

Fig. 20. Ischyrowrus hansemi.
typical). North of Spitsbergen $81^{\circ} 20^{\prime} \mathrm{N}, 19^{\circ} \mathrm{E}, 1000 \mathrm{~m}$ (Scheldexberg l. c.).

Two specimens from $78^{\circ} 15^{\prime} 5 \mathrm{~N}, 73^{\circ} 29^{\prime} \mathrm{W}, 290 \mathrm{~m}$, with some doubt referred to this species by \mathfrak{K}. Stephensen 1933 , p. 49 (Meddel. om Gronl., rol. 79, no. 7), belong in reality to 1 . brusilori Gurj. (see below, p. 33).
336. Ischyrocerus hanseni 11. sp. (Fig. 20).

Ocenrrence:
$64^{\circ} 24^{\prime} \mathrm{N}, 28^{\circ} 50^{\prime} \mathrm{W}, 1484 \mathrm{~m}, 3^{\circ} 5 .^{*} \operatorname{lng} \mathrm{golf} " \mathrm{St} .10: 20-\mathrm{Y}-1895.1 \mathrm{~J}^{7}(?)$.
Description of $o(?), 2.5 \mathrm{~mm}$ (f manown). On the body nothing is noteworthy. Head a trifle longer than the two first segments combined, or as long as first joint of antenna 1 ; lateral lobes rery acute; no eyes. Antenna 1 as long as head + mesosome; sccond and third joints subequal in length; flagellum longer than third joint, 6-articulate, third joint longer than the others; accessory flagellom about as long as first joint of flagellum, 1 -articulate. Antemna 2 lost. Pereiopod 1, side-plate with lower forecorner rounded rectangular; 6th joint oblong oval; palm not well defined frou hind edge, near finger hinge concave, then follows a triangular toath; finger long, slender, smooth. Pereiopor 2
peduncle, outer ramus shorter; both rami have each a spine near the middle. C'ropod 3 , inner camus a trifle shorter than peduncle. outer ramus shorter than imer; both rami straight and naked Telson acute, with a pair of dorsal setæ.

This species is well characterized by the long accessory flagellum. the shape of percioporls $1-2$, the narrow second joints of perciopods 5-6 (and 7 !), the almost naked aropods $1-2$, and the very long naked rami of uropod 3 .

The specific name was chosen in honour of the carcinologist H. J. Hansen, who found the species.
337. Ischyrocerus commensalis Chevreux.

Ischyrocerus commensalis Chevreux, Rés. Camp. Sci. Monaco, vol. 16,1900, p. 104, pl. 12 fig. 2.
Isehyroccrus commensalis Shoemaker, Contrib. Canad. Biol. and Fish., 11. ser., vol. 5, 1929-30, p. 126, figs.

Occurrence:

$65^{\circ} 16^{\prime} \mathrm{N}, 55^{\circ} 05^{\prime} \mathrm{W}, 682 \mathrm{m1}, 3^{\circ} 6$. "Ingolf" St. 35: 18-VII-1895. A few specimens, more or less defective.
Distribution. West Greenland $65^{\circ} 17^{\prime} \mathrm{N}, 54^{\circ} 17^{\prime} \mathrm{W}, 104 \mathrm{~m}$, "Ingolf" St. 34, 18-1'[I-1895. from Boltenia, several specimens (${ }^{\wedge}$,
Q). Off ('heticamp Island, (iulf of st. Iawrence, 3 hatuls In 75 un (Shoemaker l. e.). dugor strait, depth not noted (ficreanova, Koogeographica, rol, 2, 1935, „, 558). (lll St. dohn's, New Fouml-

 1 sри"वimen.
 Thont en specimons.

Fig. 21. Aschyrocrus megacheif. j 14 mm , and procolopod of 12 mm. "Ingolf" st. 15.

33s. Ischyrocerus megacheir (Boefk) (Fig. 21; Chart IIl). Ischyroeerus megacheir (i. O. Sars, Crust. of Norway, vol. 1, 1895, p. 592. pl. 211.

Ischyrocerus megacheir Stelbling. Tierrejch. vol. 21, 1906, ए. 659 Ischyroeerus spitzbergensis Schellenberg, Mitt. Zool. Mus. Berlin, rol. 11, 1924, p. 209, figs.

Occurrence:
$63^{\circ} 04^{\prime} \mathrm{N}, 9^{\circ} 22^{\prime} \mathrm{W}, 495 \mathrm{~m}, 5^{\circ} 3$. "Ingolf" st. 2: 12-V-1895. A few specimens, determination not certain.
$64^{\circ} 07^{\prime} \mathrm{N}, 11^{\circ} 12^{\prime} \mathrm{W}, 46 \mathrm{~m}, 2^{\circ} 5$. "Ingolf" St. 4: 13-Y-1895. About 15 specimens (0.9).
$63^{\circ} 30^{\prime} \mathrm{N}, 54^{\circ} 25^{\prime} \mathrm{W}, 1096 \mathrm{~m} .3^{\circ} 3$. "Incolf" sit. $25: 26-\mathrm{VT}-1895$. A few specimens, partly very defective
$64^{\circ} 54^{\prime}$ N", $55^{\circ} 10^{\prime} \mathrm{W}, 740 \mathrm{~m}, 3^{\circ} \times . " I n g o l f "$ St. 27: 1-VHI-1895 A few specimens
$6511^{\prime} \mathrm{N}, 55^{\circ} 12^{\prime} \mathrm{W}, 791 \mathrm{~m} .3^{\circ} 5$. "1ngolf" St. 28: 1-VII-1895 1 ovigerons o $9 \mathrm{~mm}, 2$ smaller specimens.
$66^{\circ} 35^{\prime}$ ㅅ, $56^{5} 58^{\prime} \mathrm{W}, 599 \mathrm{~m} .3^{\circ} 9$. "Ingolf" St. 32: 11-V1I-1895. 3 specimens up, to 6 mm .
$65^{\circ} 16^{\prime} \mathrm{N}, 55^{\circ} 05^{\prime} \mathrm{W}, 682 \mathrm{~m}, 3^{\circ} 6$. "Ingolf" st. 35: 18-VII-1895. Numerous specimens up to 8 mm .
$61^{\circ} 42^{\prime}$ N. $9^{\circ} 36^{\prime} \mathrm{W}, 1026 \mathrm{~m}, 4^{\circ} 8$. "Ingolf" st. 44: 14-VIII-1895. Numerous specimens.
$60^{\circ} 37^{\prime} \mathrm{N}, 27^{\circ} 52^{\prime} \mathrm{W} .1505 \mathrm{~m}, 4^{\circ} 5$. "Ingolf" St. 78: 13 -VT-1896. 1 specimen.
$65^{\circ} 14^{\prime} \mathrm{N}, 30^{\circ} 39^{\prime} \mathrm{U}^{+}, 1416 \mathrm{~m}, 2^{\circ} 1$. "Ingolf" St. 95: 27-VI-1896. About 10 specimens.
$62^{\circ} 58^{\prime} \mathrm{N}, 7^{\circ} 09^{\prime} \mathrm{W}, 731 \mathrm{~m}, \div 0^{\circ} 4$. "Ingolf", St. 143: 11-VII-1896. About 10 specimens.
than in SARs's fig.; also pereiopods 6-7 are heavier than in Sars's fig. Epimeral plate 3, lower hind corner rounded, not rectangular. Uropods $1-2$, spinose armature rather similar to that of I. assimilis (fig. 22); uropod 3, inner ramus has on the upper edge 3 spines. not one. Telson triangular, acute, length $=$ breadth.

ㅇ with marsupium, 12 mm : Antenna 1, flagellum 1I-ar-

("hart Ill. Distribution of I schyrocrus megacheir. The rings indicate localities which could nut be moted exactly.
$62^{\circ} 53^{\prime} \mathrm{N}, 9^{\circ} 06^{\prime} \mathrm{W}, 575 \mathrm{~m}$. "Michael Sars" 20-VIlJ-1902, AD. S. Jensen. 3 specimens.
$60^{\circ} 19^{\prime} \mathrm{N}, 522^{\prime} \mathrm{W}, 1200 \mathrm{~m}, \div 0^{\circ} 15$. "Dichael Sars" 10 -TIII1902, Ais. S. Jensen. About I5 specimens.
$66^{\circ} 16^{\prime} \mathrm{N}, 26^{\circ} 8^{\prime} \mathrm{W}, 600 \mathrm{~m}, \div 0^{\circ} 1$. Wandel 1891 . A few specimens. $63^{\circ} 15^{\prime} \mathrm{N}, 9^{\circ} 35^{\prime} \mathrm{W}, 510 \mathrm{~m}$. Wanhel 1891. 1 speeimen 9 mm .
$61^{c} 15^{\prime} \mathrm{N}, 9^{\circ} 35^{\prime} \mathrm{W}, 900 \mathrm{~m}$. "Thor" St. 99: 22- ${ }^{\mathrm{T}}-1904$. A few specimens incl. ovigerous f, but determination not eertain, for antenna 1 (and several other limbs) are lost.

Remarks. Accessory flagellum has a minute apieal joint and is rather long, as long as or a trifle longer than the long first joint in flagellum.
G. O. Sars (1895) writes: "length of adult female 7, of male 8 mm . Maximum length of Aretic specimens 12 mm ". In the "Ingolf" collection there are, however, specinens of lengths up to 14 mm . I have dissected two of these large specimens (6 and q; "Ingolf" St. 15) and give drawings (Fig. 21) of some of the limbs. They agree fairly well with SARs I. c., but there are some differences, probably clue to difference in size.
$\hat{0}, 14 \mathrm{~mm}$. Antema 1, flagellum has 12 (not 10) joints. Pereiopod 2, the distal portion of the pahm has 4 teeth (SARs writes that it has au "irregularly crenulated prominence"): the inner (median) side of the hand is rather concave as in I. assimilis. Pereiopod 5 not very slender, second joint suboval, a trifle broader
ticulate; antenna 2, flagellum 8 -articulate, first joint shorter than in \mathbf{o}^{0}. Pereiopod 1 as in $\mathbf{o}^{\hat{0}}$. Pereiopod 2 not essentially different from pereiopod 1, but larger. The other limbs not different from

The oral parts of these large specimens were not dissected out.
I. spitzbergensis Schellenberg is prohably this species; it agrees with the large "Ingolf"-specimens describerl above, except in the setose armature of telson, and the eyes are said to be black. Also in some of the "Ingolf"-specimens there are traces of black pigment in the eyes.

In my paper $1935-42, p .398$, I have considered I. spitzbergensis "possihly synonymous with I. assimilis", because of the rounded hind comer of epimeral plate 3 (cf. the key in Ntebbing 1906, p. $657, \$ 5$). But this corner seems to be of varying shape (square or rounded) in both I. megacheir and I. assimitis. In other, more constant speeifie characters the agreement of 1 . spitzbergensis and 1. megacheir is very close; viz., the long accessory flagellum, and outer ranms of uropod 3 not heing hooked.

Distribution (Chart lII). Widely distributed in the northern Atlantic with adjacent seas, from East of America $43^{\circ} \mathrm{N}$ and the Skagerrak, to(?) Baffin Bay, Spitsbergen and Bering or Okhotsk Sea, depths (20$) 80-1400 \mathrm{~m}, \div 1^{\circ} 4-6^{\circ} 5$. For special localities, see K. Stephensen, Tromso Mus. Skr., vol. 3, 1935-42, p. 396, and Zool. of Iceland, vol. 3, no. 26, 1940, p. 65. Additional localities:

Jugor Strait (GubJanova, Zoogeographica, vol. ¿, 1935, 1. 558), and Kara Sea $74^{\circ} 35^{\prime} \mathrm{N}, 75^{\circ} 26^{\prime} \mathrm{E}, 32 \mathrm{~m}$ (Gurdaxova, Kxplor. Mers U.R.S.S., vol. 21, I!35, p. 77).
339. Ischyrocerus assimilis ($\mathrm{t}_{\mathbf{2}} 0$ Nars) (Figs 22 23).

Podocerus assimilis G. O. sars, ('rust., vol. 1: Norske NordhavsBxp., 1885, p 205, pl. 17 fig. 1.
Ischyroeerus assimilis Stobbing, Tiomeich. vol. 21, I!ote,]. 65!
 ond third of the fengeth of first joint in flagellum, as deseribed by Sars. Antomat 2, flacllum has 7 (not \&) joints, and first joint in length about two thirds of the other joints together. I'ereiopoed I differs a litale from Sars I. ©.; palm not reme equrven, but divided into a straight (distal) ant a coneave (proximal) portion, posteriorly defincel by two spinos; dactylas which is minutely serrate, has
 larger and heavier than prompod 1; it awres well with SARS

Fig. e2. Ischyrocerus assimitis ot The detail fignre of l '.l was takrn from another specmen.

Oceurrence:
$61^{\circ} 12^{\prime} \mathrm{N}, 9^{\circ} 36^{\prime} \mathrm{W}, 1026 \mathrm{~m}, 4^{\circ} \mathrm{s}$ "Ingolf" St. $14: 14-\mathrm{T} I \mathrm{I}-1895.2$. 2. $60^{\circ} 19^{\prime} \mathrm{N}, 5^{\circ} 22^{\prime} \mathrm{W}$, about $1200 \mathrm{~m}, \div 00^{\circ} 2$. "Whehael Sars" 10-VII11902. Ad. S. Jexsen leg. A few specimens. $66^{\circ} 16^{\prime} \mathrm{N}, 25^{\circ} 20^{\circ} \mathrm{W}, 550 \mathrm{~m} . \div 0^{\circ} 2$. WaNdel]eg. 1891.1 ₹ $66^{\circ} 16^{\prime} \mathrm{N}, 26^{\circ} 08^{\prime} \mathrm{W}^{\prime}, 600 \mathrm{~m} . \div 0^{\circ} \mathrm{T}$. Wandel leg. 1891. of with marsupium, 11 mm .

Remarks. The largest \hat{j}. abont 9 mm , differs from Siks l. c. in the following characters. Eyes small. bnt not very snall, and they are round, not oval; ocels distinet. but colourless (Nars: dark brown). Antenna 1 as long as head + mesosome, antema 2 about as long as head + mesosome \perp metasome (AARs: "the antenne are ... Well-nigh equal in size, appreciably exceecling half the body in length"). Antenna 1, flagellum has 10 joints

1. (... but 6th joint (hand) is broader. Saks writes that 6th joint is tumid: in the "Ingolf" specimen the upper (anterior) part of outer side is somewhat concave, while the lower (posterior) part is convex: lower fart of imer side is most coneave. As regards pereiopods $3-4$ notbing is noteworthy; but their side-plates have forecomers rounded rectangular, not somewhat projecting as in sars's figure. SARs writes that perejopods 57 "are somewhat robust, with the basal joint lamelliform dilated". If Sars's figure is quite correct. second joint of pereionod 5 is proximally broader in the present specimen; but second joint of pereiopods $6-7$ agrees with sars's figure, in that this joint has margins almost parallel, and length abont twice the breadth. Epimeral plate 3 has hind corner rectangular, not obtusely rounded. Uropods 1-2 have the usual shape, spinose; uropod 3 , peduncle about three times as long as rami; inner ramus has one central and one apical spine,
onter ramms terminates in two small reeurved spines (in left uropod 3), or in four deminutive teeth (in right uropod 3). Telson has one pair of dorsal setre.

These differences from Sars's specimens are probably due to different size and age; the specimen descrined above is probably an adult \hat{o} (9 mm), while SARs's description was based on a specimen a trifle smaller (8 mm) and probably not quite mature.

Two other ô $\hat{\delta}$ which are in length equal to SARs's specimen, have pereiopod 1 shaped as in SARs's figure, with palm evenly curved and with also pereiopod 2 agreeing with Sars.

Fie. 23. Ischyrocerns assimilis.

O with marsupium, 8 mm, differs from the large o $\hat{0}$ in but few characters: flagellum in antema 1 has 8 (not 10) joints (but flagellum in antenna 2 has $6-7$ joints in both sexes). Pereiopod I has palm evenly enrved as in SARs's figure, lut pereiopod 2 has palm divided into two portions as in pereiopod 10.

Distribntion. The deep Aretic Basin $827 \mathrm{~m}, \div 1^{\circ} \%$; South of Bear lsland, $64 \mathrm{~m},+1^{\circ} 1$; North of Spitsbergen, 1000 m ; Hudson Bay; for references see K. Stephensen 1935-42, p. 398.

340. Ischyrocerus megalops G. O. Sars.

Ischyrocerus megalops G. O. Sars, Crust. of Norway, vol. 1, 1895, 1). 591 , pl. 210 fig. 2.

Ischyrocerus megalops Stebling, Tierreich, vol. 21, 1906, p. 660.
Oecurrence:
$61^{\circ} 12^{\prime} \mathrm{N}, 9^{\circ} 36^{\prime} \mathrm{H}, 1026 \mathrm{~m}, 4^{\circ} \mathrm{s}^{\circ}$. "Ingolf" St. 44: 9-T1II-1895. 10 specimens.

Distribution. Northern Norway $65 \frac{1}{2}{ }^{\circ}-70^{\circ} \mathrm{N}, 1-75 \mathrm{~m}$; eastern Spitsbergen 60 m . For special localities see K . Stepinexsen, Tromso Mus. Skr., vol. 3, 1935-42, p. 398.

341. Ischyrocerus brevicornis (G. O. Sars).

Podocerus brericornis G. O. Sars, Crust., vol. 1: Norske NordhavsExp., 1885, p. 207, pl. 17 fig. 2.
Ischyrocerus bremicomis Stebbing, Tierreich, vol. 21, 1906, p. 661. Oecnrrence:
$66^{\circ} 23^{\prime} \mathrm{N}, 12^{\circ} 05^{\prime} \mathrm{H}, 1011 \mathrm{~m}, \div 0^{\circ} 7$. "Ingolf" St. 101 : $10-\mathrm{VIJ}$ 1896. If with marsupium, 6.5 mm .
$67^{\circ} 19^{\prime} \mathrm{N}, 15^{\circ} 52^{\prime} \mathrm{W}, 552 \mathrm{~m}, \div 0^{\circ} 5$. "Ingolf" St. 126: 29-VIH-1896. 1 specimen, no marsupium, 6 mm .
$62^{\circ} 30^{\prime} \mathrm{N}, 1^{\circ} 56^{\prime} \mathrm{W}, 500-550 \mathrm{~m}, \div 1^{\circ} 17$. "Michael Sars", Ad. S. Jensen leg. I specimen, no marsupium, 5 mm .
$62^{\circ} 40^{\prime} \mathrm{N}, 1^{\circ} 56^{\prime} \mathrm{W}, 700 \mathrm{~m}, \div 0^{\circ} 3$. "Michael Sars", Ad. S. Jensen leg. 1 specimen, no marsupimm, 5 mm .
$60^{\circ} 19^{\prime} \mathrm{N}, 5^{\circ} 22^{\prime} \mathrm{W}$, c. $1200 \mathrm{~m}, \div 0^{\circ} 15$. "Michael Sars" $10-\mathrm{V} \mathrm{HI}-$ 1902, Aı. S. Jensen leg. I specimen, no marsupium, 5 mm .

Remarks. Accessory flagellum is (as in SARs's fig. 2a) only half as long as first joint of the primary flagellum, but Sars's text says "almost as long as 1 st joint of flagellum".

Distrihntion. From East Greenland and Aretic Polar Basin to eastern Barents Sea, possibly to Kara Sea, 160-1400 m, negative temperatures. For special localities, see K. Stephensen, Tromso Mns. Skr., vol. 3, 1935-42, p. 399.
342. Ischyrocerus brusilovi Gurjanova (Fig. 24).

Ischyrocerus lırusilovi Gurjanova, Zool. Anzeiger, vol. 103, 1933, p. 126, no figs. (ô, ㅇ).

Ischyrocent brusilovi Gurjanova, Explor. des mers de l'U.R.S.S., vol. 21, 1935, p. 78 (Russian), figs. (ô, q).
Prohably synonymous with:
Podocerus hoeki Stelbing, Auphip. "Challenger", 1888, p.1136, pl. $120\left(\sigma^{*}\right.$,) $)$, which is, according to Stebbing 1894 (sce below), synonymons with
Podocerus tuberculutus Hoek, Niederl. Areh. f. Zool., Suןpl.-lud.1, 1882, Crust., p. 64, pl. 3 fig. 32 (ot).
Podocerus tuberculatus Stebling, Bijdragen Dierkunde, Amsterdam, vol. 17, 1894, p. 45 (sex not noted).
Isehyroceras tuberculatus Stebbing. Tierreich, vol. 21, 1906, p. 661. Ischyrocerus tuberculatus K. Stephensen, Tromso Mus. Skr., vol.3, 1935 42, p. 400 , with reproduction of HoEk's fig. (O).

Oecurrence:
$65^{\circ} 34^{\prime} \mathrm{N}, 7^{\circ} 31^{\prime} \mathrm{W}, 1435 \mathrm{~m}, \div 0^{\circ} 8$. "Ingolf" St. 105: 11-111-1896. 3 of $5-8 \mathrm{~mm}$ (and? 3 smaller specimens).
$70^{\circ} 05^{\prime} \mathrm{N}, 8^{\circ} 26^{\prime} \mathrm{W}, 699 \mathrm{~m}, \div 0^{\circ} 4$. "Ingolf" St. 116: 23-111-1896. 10 ahout $6 \mathrm{~mm}, 2$ small specimens.

Remarks. The largest \hat{o} ($8 \mathrm{~mm} ;$ "Jngolf" St. 105) agrees fairly well with Gurjanova's description and figures af I. brusilori, but differs in a few small details, and some additions should be made. Antenna 1, first joint of peduncle in length two thirds of second joint, or two thirds of the head measured from hind margin to apex of lateral lobe (GurJanova: "kïrzer als der Kopf"); third joint in length $=$ second joint; flagellum 7 -articulate (GukJanova: 8-articulate). Aceessory flagellum a trifle over half the length of first joint of flagellum (not mentioned or drawn by Gurdanova). Antenna 2 much heavier than antema 1 ; the two distal joints of peduncle equal in length; flagellum a trifle shorter than ultimate joint of peduncle, 5 -articulate, first joint nearly as long as the following joints combined (in Gurdanova's figure not much longer than the other joints). Pereiopod 1, denticles on palm extremely small; palm defmed by two spines. Pereiopod 2, the knots on palm somewhat smaller than shown in GurJanova's figure; the knot close to finger hinge has a small apical notch; dactylus smooth (not dentate). l'ereiopods 3-7 not described by Gurdanova. Pereiopods 3-4 rather stont, especially in second joint; emargination in hind margin of th side plate not deep. Pereiopod 5 longer than prp. 3, but shorter than prp. 6-7; anterior lobe of side plate not deep: second joint not much longer than broad, with margins smooth and nearly parallel, upper hind corner rounded and protruding upwards, lower hind corner rounded but not protruding. Pereiopod 6 has second joint much narrower than in prp. 5, maximal length nearly twice the breadth, fore margin smooth and nearly straight, hind margin slightly convex with upper hind corner protruding upwards and rounded triangular, and lower hind corner somewhat rouuded but very little protruding. Pereiopod 7, second joint twice as long as it is broad,
with margins ahosi parallel mpere lime corner shghty protruding. romnded, dower hind cormer rectangular. L'roperds 12 spinose, each with peduncle terminating in a long spinn. (Tropend 3 agrees with GurdaNovis figure. In the form Nit. 105 I was not able to find the two lateral spines and the two long setio in telson mentioned by Gremanors, hat the seta are present in the j from St. 116 .

 minulas $/$. (mamoides (II J. II.) !)).

Family: Corophiida Inam

Corophider G. O. Sars, ('rust. of Norway, vol. 1, 1895, pJ). 606626, + Podoceridse (in parte) pp. 601-605.
Corophiide Stebbing, Tierreich, vol. 21, 1906, p. 662.

Genus: Ericthonius Milne-Edwards.
343. Ericthonius megatops (G. (). Sars) (Clart IV).

Eriethonius megalops G. O. Sars, (rust. I. Norske Nurdhavs Exp 1885, p. 210, pl. 17 fig .4.
Eriehonius megalops Stehhing, Tierreich, vol. 21, 1906, [. 673.

Ocentrence:

$63^{\circ} 13^{\prime} \mathrm{N}, 15^{\circ} 11^{\prime} \mathrm{W}, 1130 \mathrm{~m}, 4^{\circ} 5$. "Ingolf" St. 7: 17-Y-1895. 1 J $66^{\circ} 18^{\prime} \mathrm{N}, 25^{\circ} 59^{\prime} \mathrm{W}, 621 \mathrm{~m} . \div 0^{\circ} 75$. "Ingolf" St. 15:4-VI-I895. I S. $63^{\circ} 30^{\prime} \mathrm{N}, 54^{\circ} 25^{\prime} \mathrm{W}, 1096 \mathrm{~m}, 3^{\circ} 3$. "Ingolf" St 2 : 25 : 26-VI-1895 29.
 Several specimens (ob. q. juv.).
$66^{\circ} 16^{\prime} \mathrm{N}, 268^{\prime} \mathrm{W}, 600 \mathrm{~m}, \div 0^{\circ} 1$. WanluEl, 1801. I hig o° $60^{\circ} 19^{\prime}$ N, $5{ }^{\circ} 22^{\prime} \mathrm{W}, 1200 \mathrm{~m}, ~ \div 0^{\circ} 15$. "Michacl sars" $18-\mathrm{JILI}-1!022$. Ab. A. dexsen leg. 3 f, determination not certain.

Distrilontion (Chart IV). From Labrador(?) and Baffin Bay to White Sea; also the deep Polar Basin, depths $10->1100 \mathrm{~m}$. For special focalitics see K. Stephensen, Tromso Mus. Skro, vol. 3. 1935-12, p. 403.

Ericthonius, spp. indeterm.
$66^{\circ} 35 " \mathrm{~N}, 56^{\circ} 38^{\prime} \mathrm{W}, 594 \mathrm{~m}, 3^{\circ}$!. "Ingolf" St. 32: Il-\II-1895 1 sperimen.

$63^{\circ} 26^{\prime} \mathrm{N}, 7^{\circ} 56^{\prime} \mathrm{W}, 887 \mathrm{~m}, \div 0^{\circ} 6$. "Ingolf" St. $138: 10$-VIII-1896. A few specimens.
$70^{\circ} 32^{\prime} \mathrm{N}, 8^{\circ} 10^{\prime} \mathrm{W}, 900 \mathrm{~m}$. 27-VI-1891. 2 specimens.

Genus: Neohela S. I. Smith.

344. Neohela monstrosa (Boeck) (Chart V).

Ncohela monstrosa G. O. Sars, Crust. of Norway, vol. 1, 1895, p. $624, \mathrm{pl} .224$.

Neohela monstrosa Stebbing, Tierreich, vol. 1, 1906, p. 675.

Occorrence:

$66^{\circ} 23^{\prime} \mathrm{N}, 7^{\circ} 25^{\prime} \mathrm{W}, 1802 \mathrm{~m}, \div 1^{\circ} 1$. "Ingolf" St. 104: 11-VII-1896. 10 §ै, 1 q with marsupium.
$69^{\circ} 13^{\prime} \mathrm{N}, 8^{\circ} 23^{\prime} \mathrm{W}, 1889 \mathrm{~m}, \div 1^{\circ} 0$. "Ingolf" St. $117: 24$-VII-1896. 4 specimens.
$69^{\circ} 29^{\prime} \mathrm{N}, 11^{\circ} 32^{\prime} \mathrm{W}, 1667 \mathrm{~m}, \div 1^{\circ} 0$. "Ingolf" St. 120: 25-17I1896. About 10 specimens.
$67^{\circ} 19^{\prime} \mathrm{N}, 15^{\circ} 52^{\prime} \mathrm{W}, 552 \mathrm{~m}, \div 0^{\circ} 5$. "Ingolf" St. 126: 29-VII-1896. 1 small, defective
$63^{\circ} 26^{\prime} \mathrm{N}, 7^{\circ} 58^{\prime} \mathrm{W}, 887 \mathrm{~m}, \div 0^{\circ} 6$. "Ingolf" St. 138: 10-VTII1896. 1 す. $66^{\circ} 32^{\prime} \mathrm{N}, 18^{\circ} 50^{\prime} \mathrm{W}, 492 \mathrm{~m} . \quad$ "Dana" St. $4616: 1-\mathrm{V} 111-1933.10$.

It has been recorded from the following localities at depths $>400 \mathrm{~m}: 73^{\circ} 12^{\prime} \mathrm{N}, 58^{\circ} 08^{\prime} \mathrm{W}, 860 \mathrm{~m}, 0^{\circ} 5$ (K. Stephensen, Meddel. on Gronl., vol. 79, no. 7, 1933, p. 51), and two samples in Bredefjord, SW. Greenland, $410-560 \mathrm{~m}$ (K. Stephensen, ibid., vol. 53, 1916, p. 295).

Length up to 31 mm ($\widehat{0}$) and 25 mm (f).
Distribution (Chart V). From Arctic America (Gaasefjord) and the New England States to Denmark, northern Norway and Spitsbergen; depths down to $>2200 \mathrm{~m}$. For special localities see K. Stephensen, Zool. of Iceland, vol. 3, no. 26, 1940, p. 65, and Tromso Mus. Skr., vol. 3, 1935-42, p. 404.

Genus: Unciola Say.

345. Uncjola laticornis H. J. Hansen (Fig. 25).

Unciola laticornis H. J. Hansen, Vid. Medd. Naturh. Foren. Kjobenlavn, 1887, p. 166, pl. 6 figs. $7-7 \mathrm{~b}$.
Unciola laticomis Stebbing, Tierreich, vol. 21, 1906, p. 677.
Occurrence:
$64^{\circ} 35^{\prime} \mathrm{N}, 31^{\circ} 12^{\prime} \mathrm{W}, 2448 \mathrm{~m}, 1^{\circ} 6$. "Ingolf" St. 11 : 21-V-1895. 1 ot. $65^{\circ} 43^{\prime} \mathrm{N}, 26^{\circ} 58^{\prime} \mathrm{W}, 471 \mathrm{~m}, 6^{\circ} 1$. "Ingolf" St. 16: 6-VI-1895. $1 \sigma^{\circ}$ (+ ? 1 defective $\%$).

Remarks. H. J. Hansen had a single ot, 5.7 mm , and since then no author has seen any specimen. The "Ingolf" Expedition has secured $2 \hat{\delta} 0 \hat{0}$ and a rather defective suall q, possibly belonging to the same species.

Hansen has given an excellent description (in Latin), a" companied by 3 drawings, viz, antenna 2, pereiopod 1, amd urosome. Therefore I give drawings of the majority of the limbse with some supplemental remarks on the largest on, 9 mm , from St. 11. Rostrum acute, covers about $1 / 5$ of lirst joint of autcmua 1
rami atout lalf the length of peduncle, with a few spines. Uropent 3 agrees with llansen, but inner ramus has no mete presered.

The speries is characterised by the 4 spitus on under efge of first joint of antoma 4 ; acensory tharellamshort, (2 juints + short apical juint): latoral lobses of lumal trunctu hat harrow; shape of "pineral flatis; uropud 3.

('hart V. Distribution af Neohele monstrosn.
(Hansen: "cornu frontale brevius"), a trifle more protruding than lateral lobes. No eyes could be found (Hansen: "oculi manifesti, deluti"). Antenna 1 (lost in the type-specimen) as long as body from rostrum to apex of telson, possibly even still longer, for apex seems to be lost. The two proximal joints of peduncle subequal in length, reach to middle of ultimate joint of peduncle of antema 2; first joint heavier than second. with 4 spines along under edge; third joint very short, about $1 / 5$ of second joint. Flagellum longer than peduucle, consists of >24 joints, for apex is probably lost. Accessory flagellum very short, consists of two long and one very short joint. Antemna 2 agrees with Haxsen J.c. (with figure), but pemulimate joint of peduncle is a little longer, length ahout $21 / 2$ times the breadth (Hansen: "vix duplo longior quam latior"), and also antepenultimate joint is longer than described by Haxsen; flagellum in length equal to penultimate joint, has 13-14 joints. Pereiopod 1, hand somewhat more stout than shown by Havsen (fig. 7a); dactylns minutely serrate. Pereiopods 2-7 agree fairly well with Hansen's description.

All three pairs of epimeral plates have each a tooth on lower hind corner, increasing in length from first to third plate, and in the two last segments with a siuus above. Uropod 1, peduncle ends in a triangular acute process not drawn in Hansen's figure:
346. Unciola crassipes H. J. Hansen (Figs. 26-27: Chart V1). U'nciola crassipes H. J. Hansen, Vid. Medd. 1887. 1. 165. pl. 6 fig. 6, 6 a .
I'nciola crassipes Stebling, Tierrejch, vol. 21, 1906. p. 679.
Ocwurance:
6301^{\prime} N. W'22' $\mathrm{W}, 143 \mathrm{~m}, 5^{\circ} 3$. "Ingolf" St. 2: 12- $\mathrm{V}^{\prime}-1895.2$ sperimens.
$64^{\circ} 51^{\prime} \mathrm{N} .55^{\circ} 60^{\prime} \mathrm{W}, 740 \mathrm{~m} .3^{\circ} 8$. "Ingolf" St. 27 : 1-VII-Is95. 5 specimens.
$66^{\circ} 35^{\prime} \mathrm{N}, 56^{\circ} 38^{\prime} \mathrm{W}, 559 \mathrm{~m} .3^{\circ} 9$. "Ingolf" St. 32: 11-VIl-1895. Several specimens.
$65^{\circ} 16^{\prime} \mathrm{N} .55^{\circ} 05^{\prime} \mathrm{H}, 682 \mathrm{~m}, 3^{2} 6$. "Ingolf" st. 35: 18-VI1-1895. Numerous specimens.
$62^{\circ} 57^{\prime} \mathrm{N} .19^{\circ} 58^{\prime} \mathrm{W} .957 \mathrm{~m} .{ }^{\prime}$ Thor"St. 166 : I4-VII-1903. 4 specimens.
It has heen recorded from the following locality at depth $>100 \mathrm{~m}$: Davis Strait $66^{\circ} 22^{\prime} \mathrm{N}, 57^{\circ} 16^{\prime} \mathrm{W}, 686 \mathrm{~m}$ (K. Stephensen, Vill. Medd., vol. bit, 1912, p. (37).

Remarks on $\hat{\text { ong }}$, length up to 12 mm (H. J. Hassex: 9 mm). The "Ingolf"-specimens agree well with H. J. Hassen l. c., except in the following characters. Rostrum varies somewhat in length

Chart VI. - Distribution of t'nciola cressigus. O I'. petalocern.
(Hansen: "cornu frontale sat longum"), covers from about $1 / 6$ to about $1 / 4$ of the length of first joint of antenna 1. Under rostrum is a notch, and then a rather high epistomal plate follows (Fig. 26, (C). Lateral lobes of head truneate, much broader than in I. Iuticomis. Epimeral plates of metasome have hind margins rounded; lower hind corner in plate 1 almost rectangular, without tooth, in plate 2 with a small tooth, and in plate 3 with a somewhat larger tooth with a small sinus above. Antemna 1, Hagellum in length equal to peduncle, about 25 joints: accessory Hagellmm has 4 joints + the minute apical joint. Antema 2. 3rd joint almost as long as and a trifle hroader than next joint; flasellum has about 17 joints. Pereiopod 1, hand differs a little from Hansen 1. c., in that the tooth on pralm is nearer to finger hinge than in H.'s figure, and not with fore and hind edges symmetrical, but with apex turned toward finger hinge. Pereiopods 2-7 agree fairly well with C^{\prime}. Iaticornis (fig. 25). Uropod 1. peduncle twice as long as rami which have rather few spines (outer ramus, on outer edge 4 , on inner edge 2). L'ropod 2. peduncle twice as long as rami; outer ramus has on outer edge $2(3)$, on inner edge 2 spines; inner ramus on outer edge 1, on inner edge 3 spines. Uropod 3, pedmele somewhat triangular, longer than broad: outer ramus orate, half the length of peduncle, with $3-4$ spines and about 7 setre: inner ramus shorter and narrower than outer, with $2-3$ terminal spines and two setre: it is articulate, but has no muscles. As regards imer
ramus Havsex writes (1. e.. p. 166) "ramo interiore non a pedunculo membrana articulari separato, parro", and (p. 167, Danish), "in U. crussipes inner ramus is distinct, but not separated by an articulation from perdunele

Description of q with marsupium, It mm (f was hitherto not deseribed). Antema 1, the two proximal joints of pedunele subequal in length, third joint in length $1 / 3$ of second joint; Hagellum as in $\hat{5}$. Accessory flagellum has 5 joints + the minute apical joint. Antenna 2 not heavier than antenna 1, and third and fourth joints of pedmete eylindrical, not with lamellar expansion as in 3^{*}; fifth joint a tritle shorter than fourth which is about twice the length of third joint; flagellum not much longer than fourth joint of pedunele, 14 -articulate. Pereiopod 1, 5th joint much larger than in δ : atso 6 th joint differs, in that process defining palm is lower, but much broader than in ot, and apieally with a spine, and also tooth near finger hinge is lower and hroader. Pereiopods 27 not differing from 3 . There are 5 pairs of marsupial plates: very large and oval in perciopods 2-5, but narrow and short (- not broader and not much longer than gills -) in prp. 6. Other characters not different from $\mathbf{\sigma}^{\circ}$.

This species is characterised by the following features: lateral lobes of head very broad, apically truncate; antenna 1 , peduncle with a few hairs, but without spines, and accessory flagellum has

Fig. 25. Inciola laticomis 3. "1ngolf" ist. 11.

Fig. 26. U'nciola crussipes o". "Ingolf" St. 35.

4 or 5 joints, + minute apical joint; shape of epimeral plates (see fig. 26); uropods $1-2$, rami about half as long as peduncle; uropod 3 , inner ramus articulate, shorter and narrower than onter, apically with 2-3 short spines.

Distribution. Baffin Bay $71^{\circ} 10^{\prime} \mathrm{N}, 58^{\circ} 56^{\prime} \mathrm{W}, 375 \mathrm{~m}$, clay (type-locality; H. J. Hansen I. c.).
347. Unciola petalocera (G. O. Sars) (Fig. 28; Chart VI).

Unciola petalocera G. O. Sars, Crust., I, Norske Northavs-Exp., 1885, p. 212, pl. 17 fig. 5.
Unciola petalocera Stebbing, Tierreich, vol. 21, 1906, p. 681.
Occnrrenee:
$65^{\circ} 34^{\prime} \mathrm{N}, 7^{\circ} 31^{\prime} \mathrm{W}, 1435 \mathrm{~m}, \div 0^{\circ} 8$. "Ingolf" St. 105: 11-VII-1896. 1 §, 1 ㅇ․
$63^{\circ} 30^{\prime} \mathrm{N}, 7^{\circ} 30^{\prime} \mathrm{W}, 1322 \mathrm{~m}, \div 0^{\circ} 6$. "Ingolf" St. 139: 10-VIII1896. Fragments of 3 large δ^{-1} and a few very defective young specimens.
Remarks. The of from St. 105 is 13 mm (Sars's type-specimens were 10 mm). Distal end of antenna 2 is lost, but it is easily reєognizable e. g. by the very characteristic pereiopod 1 with the long dactylus. On the whole the specimen agrees well with Sars l. e., but a few details are noteworthy. A very short rostrum is present (see fig. 28); Sars writes "the head occurs truncate auteriorly, without exhibiting any distinctly prominent rostrum'. Antenna 1, flagellum >26 joints (apex probably lost); accessory flagellum a trifle longer than the two first joints of flagellum, has 3 joints + the minute apical joint (SARs: "two-jointed"). Antenna 2, only the 3 proximal joints are preserved. Oral parts were not dissected out. Epimeral plates, each has on lower hind corner a tooth with a sinns above: both tooth and notch are

Fig. 27. L'nciola crussipes \&. "Ingolf" St. 35.

Fig. 28. ["nciola petalocera ô. "Ingolf" st. 105.
largest in segment 3 (Sidts shows no simus). Uroporls 1 - 2 more spinose than in SAbs"s ligure; perlmarla of uropoll lerminatos in a strong tooth. Uropod 3 , outer ramus twice as long as immer ramus which ends in two spines, hut in the of from St. IOF there is but one spine (Sars: I spine). I have found no setie on telson (Sabs: "fumished at the extremity with 2 short bristles'").

The of from St. $105,9.5 \mathrm{~mm}$, is still more defective than the O. but seems to agree well with Natses doseription, (exerpt for the differences mentioned above.

Distribution (see ('lurt V'1, p. 36). Nonat $63^{\circ}-75^{\circ} \mathrm{N}, 2^{\circ}-$
$16^{\circ} \mathrm{E}, 610 \mathrm{l}, \mathrm{OH} \mathrm{m}, \div 0^{\circ} \div 12$, clay, 6 hauls (type-localities; sars l. (c.).

Unciola spp., defective or young specimens.

 $\left.63^{\circ} 08^{\prime N}, 151\right)^{\prime} \mathrm{W}, 1301 \mathrm{~m}, 3^{\circ} 9$. "Ingolf" St. 51: $18-1$ '-1896.

Fimily: Podocerida Stebling (Dulichiidze aut.).

Dulichioder (1. O. Sars, (rust. of Norway, vol. 1, 1895, j. tiek. Podoccrida Stebhing, Tiermeh, vol. 21, 1906, p. 641.

Gemus: Latmatophilus Bruzelius.

348. Latmatophilus armatus Norman (Chart VIl).

Letmatophilus armatus G. O. Sars, ('rust. of Norway, vol.1, 1895, p. 632, pl. 227 fig. 1.

Latmatophilus amatus Stebbing, Tierreich, vol. 21, 1906, p. 697. Latmatophilus armatus K. Stephensen, 'Lromso Mıs. Skr., vol. 3, $1935-12$, p. 411 (lit., fotc.).

Occurance:
$611^{\circ} 57^{\prime} \mathrm{N}, 57^{\circ} 10^{\prime} \mathrm{W}, 740 \mathrm{~m}, 3^{\circ} 8$. "Ingolf" St. 27: 1-VII-1895. Numerous specimens.
$65^{\circ} 16^{\prime} \mathrm{N}, 55^{\circ} 05^{\prime} \mathrm{W}, 682 \mathrm{~m}, 3^{\circ} 6$. "Ingolf" St. 35: 18-V11-1845. Numerous spocimens.

Ghart VII. Distribution of Latmatophilus armatus.

- new localities, $O=$ localitios from the literature, noted exactls:

Chart VIII. Distribution of Xemodice frumenfeldti.
new localities, $O=$ localities from the literature.
$63^{\circ} 08^{\prime} \mathrm{N}, 15^{\prime} 40^{\prime} \mathrm{W}, 1301 \mathrm{~m}, 3^{\circ} 9$. "Ingolf" St. 54: 18-Y'-1836. 1 specimen.
$62^{\circ} 57^{\prime} \mathrm{N}, 19^{\circ} 58^{\prime} \mathrm{IT}, 957 \mathrm{~m}$. "Thor"* St. 166: 14-VII-1903. Numerous specimens, incl ovigerous f.
$63^{\circ} 05^{\prime} \mathrm{N}, 20^{\circ} 07^{\prime} \mathrm{W}, 557 \mathrm{~m} . ~ " T h o r " N$ ' 167 : 14-YH-1903. A few specimens.
$61^{\circ} 15^{\prime} \mathrm{N}, 935^{\prime} \mathrm{TV}, 900 \mathrm{~m}$. "Thor" St. 89: 22-V-190t. About 10 specimens.

Distrilution (Chart VII). In addition to the localities above it is distributed at NW. and S . Iceland $216-326 \mathrm{~m}$, and from N. Norway (Lofoten) to W. Africat $22^{\circ} \mathrm{N}$, depths $36-900 \mathrm{~m}$. For special localities see K. Aterpensex l. €.. and Zool. of Iceland, vol. $3,110.26,1940$. p. 67.

Gemus: Xenodice Bueck.

349. Xenodice frauenfeldti Bocek (Chart \IHI).

Tenodice frouenfellti (t. 0. Sars, Crust. of Norway, vol. 1, 1895. p. 633. p1. 227 fig. 2.

Senorlice fraupnfoldti Stebbing, Therreich, vol. 21, 190t, p. 700.
Ocrurrence:
$65^{\circ} 16^{\prime} \mathrm{N}, 55^{\circ} 05^{\prime} \mathrm{W}, 652 \mathrm{ml}, 3^{\circ} \mathrm{ti}$. "Ingolf" St. 35: 18-VII-1895. A few specimens including ovigerous
 imens.
$63^{\circ} 05^{\prime} \mathrm{N}, 20^{\circ} 17^{\prime} \mathrm{WH}^{\prime}, 557 \mathrm{~m} .{ }^{\prime \prime}$ Thor" N't. 167: 14-V11-1903. 3 sprecimens.
$61^{\circ} 07^{\prime} \mathrm{N}, 9{ }^{\circ} 30^{\prime} \mathrm{W}, 835 \mathrm{~m}$. "Thor" St. $78: 12-\mathrm{V}-1904$. 1 specimen. $61^{\circ} 15^{\prime} \mathrm{N}, 95^{\prime} \mathrm{UT}, 900 \mathrm{~m} . " T h o r "$ s't. $99: 22-\mathrm{V}-190 \mathrm{l}$. 2 specimens.

Wist ribution (Chart VIII). In addition to the localities above it has been found $49^{\circ} 25^{\prime} \mathrm{N}, 12{ }^{\circ} 20^{\prime} \mathrm{W}, 1270-1180 \mathrm{~m}$, "Thor" St. 93, 25-VI-1905. 1 specimen (in the Zool. Museum, Copenhagen). s . of Iceland $216-326 \mathrm{~m}$, the Faroes $23-30 \mathrm{~m}$, and from N. Norway $71^{\circ} \mathrm{N}$ to the Skagerrak and Kattegat, 56-640 m (K. Stephersen, Tromso Mus. Skr., vol. 3, 1935-42, p.414, and Zool. of Icetand, vol. 3, no. 26, 1940, p. 67).

Genus: Dulichia Kroyer.

Dulichia G. O. Sars; 1. c. 1895, p. 634.
Dulichio Stelbing, l. c. 1906, p. 708.
After 1906 (Stebbing, Amphip. Tierreich) the following species have been established (according to Zool. Record up to 1940):

1. D. bispina Gurjanova, Zool. Anz., vol. 86. 1930. p. 245, figs.
2. D. Rnipouitschi Gurjanova, Zool. Anz.. vol. 103. 1933, p. 127, no fig.
 Inst．Ityhrol．Leningrat，1931，1r． 87 （in Rnssian），fics．
D）．aspina R゙．Stephenson，Hekkel．（1nt（ironl．，vol．7！！，no． 7. 1933，1． 57. figs．
1）．Lnipomitschi（iurj．1）．aspina K゙．Sicph．，lide（iurjamosa Zool．A1\％．，vol．116．1434，13． 151.
 ｜11｜｜ 1 ！ 1 ．

Remarks．Though the large simecimens（from the＂Michael

Fig．29．Intichia hirlicomis ó，and ノ＇I－2 7 ．

350．Dulichia macera（1．O．Sars
Dulichia macera G．O．Sars，Crust．．Norske Nordhavs－Exp．，vol．1， $1885, \mathrm{p} .220, \mathrm{pl} .18 \mathrm{fig} .2$.
Dulichia macera Stebhing，Tierreich，vol．21，1906，p． 710. Oceurrence：
Jan Mayeu $70^{\circ} 32^{\prime} \mathrm{N}, 8^{\circ} 10^{\prime} \mathrm{W}$ ， 885 m ，clay with small stones （H．J．Haxsen，Heddel．on Gronl．，vol．19．1895，p．130）．The specimen is a δ ，ahout 4 mm in length，and very defective： antemax 1－2，and perciopots 3 and 57 are lost．
Distribution．The deep Polar Basin： $69^{\circ} 41^{\prime} \mathrm{N}, 15^{\circ} 51^{\prime} \mathrm{E}$ ， $1591 \mathrm{~m}, \div 1^{\circ} 2$ ，sabulons clay，and $72^{\circ} 57^{\prime} \mathrm{N}, 14^{\circ} 32^{\prime} \mathrm{E}, 817 \mathrm{~m}$ ， $\therefore 0^{\circ}$ ，clay（type－localities；（r．O．SArs l．c．）．Not found elsewhere．

351．Dulichia hirticornis G．O．Sars（Fig．29）．

Dulichia hirticomis（1．O．Sars，Crust．，Norske Nordhavs－Exp．， rol．1，1885．p．218，pl． 18 fig．1．
Dulichia hirticormis Stehhing，Tierrejeh，vol．21，1906，p． 711. Occurrence：
$61^{\circ} 30^{\prime} \mathrm{N}, 1^{\circ} 21^{\prime} \mathrm{W}, 950 \mathrm{~m}, \div 0^{\circ} 5$ ，mud．Wandel leg． 1890 ．Several specimens up to $8-9 \mathrm{~mm}$ ．
cnces．Antenna $1 \mathbf{o b}$ ．flagellurı an length equal to last joint of peduncle，and consisting of 5 joints，the first of which is a trifle shorter than the following taken together（Sars：＂the flagellum is shorter than the last joint of the peduncle，and composed of I segments，of which the Ist is considerably longer than are all the other three taken together＂）．Accessory flagellmm is 3－arti－ culate（SARs：＂very small＂）．Antema 23 ，flagellum has 3 joints： their lengtl ratio： $9: 4: 2$（SARs says only that it is＂somewhat shorter than on the lst pair＂）．Antennae $1-2$ of not different from ob．Eyes（in both sexes）colourless，romul．rather little projecting， but not smaller than in D．porrcele（SaRs：＂very small，do not project toward the sides；they are oval－rotund in form，somewhat obligue as to position，and furnished with very light whitish－ vellow pigment＂）．

Pereiopod $1 \hat{o}$ is not described hy Saps．5th joint is rather broak，nearly 1^{11} a times as long as 6th joint which is rather narrow，with hind margin straight；dactylus two thirds the length of tith joint．Pereiopod 2 of agrees fairly well with Sars l．c．；but SARs does not mention the large lohe at the distal end of and joint and the tuhercle on dactylus near finger hinge．Pereiopod 1 onot essmitially different from pereiopod $10 \hat{0}$ ．Pereiopod 2 of similar to perciopod 1 ：the most important differences are： 2 n l
joint has a "wing" along the fore margin, it is, however, much narrower than in pereiopod $2 \sigma^{3}$; 5 th joint rather short, a trifle shorter than 6th joint; dactylus setose at the concave side. l'ereiopods $3-4$ in both sexes, sceund joint elliptical, maximal breadth about two fifth the length; in pereiopod 3 secoud joint is about as long as th and 5 th joints together, in pereiopod 4 it is 1^{1}, times the length of 4 th joint; 4 th joint somewhat broader than the following joints. Pereiopods $5.6 \hat{3}$ and q subequal in length, somewhat shorter than pereiopor 7 ; second joint in perciopod 6 shorter than in prp. 5 and 7 , and in breadth equal to the same joint in prp. 7 , but narrower than in prp. 5. The
$61^{\circ} 50^{\prime} \mathrm{N}, 56^{\circ} 21^{\prime} \mathrm{W}, 2702 \mathrm{~m}, \mathrm{I}^{\circ} 5 .{ }^{\text {. }}$ Ingolf" St. 36 : 28-VII-1895. A few specimens up to $5 \mathrm{~mm}(\hat{O}$,, ; aud a few juv., belonging to the same species?).
$60^{\circ} 17^{\prime} \mathrm{N}, 54^{\circ} 05^{\prime} \mathrm{W}, 3229 \mathrm{~m}, 1^{\circ} 4$. "Ingolf" St. 37: 29-VII-1895. $1 \mathrm{o}, 6 \mathrm{~mm}$ (type).
The few $\widehat{o b} \hat{o}$ iu the material are rather defective (anteunæ $1-2$ and several other appendages are lost); but in all of them pereioporls 1-2 and uropoda are kept.

Description of $\widehat{0}$, about 6 mm , from St. 37 (Fig. 30). Body rather slender, smooth. Head shorter than the two first segments

Fiq. 30. Dulichia abyssi ot. "Ingolf" St. 37.
uropods are said by Sars to have the usual structure. Uropod l, length ratio of rami and peduncle: 6:5:4: in uropod 2 the length ratio is: $9: 6: 4$; peduncle of uropod 1 about twice the length of pedunele of uropod 2 ; both of the uroporls are spinulose. There is no marked sexual difference in the uropods.

Distribution. The deep Polar Basin: $6244^{\prime} N, 1^{c} 18^{\prime} E$, $733 \mathrm{~m}, \div 1^{\circ} 0$, clay; $63^{\circ} 10^{\prime} \mathrm{N}, 50^{\prime} \mathrm{E}, 763 \mathrm{~m}, \div 1^{\circ} 0$, sabulous clay; aud $71^{\circ} 25^{\prime} \mathrm{N}, 15^{\circ} \pm 1^{\prime} \mathrm{E}, 1134 \mathrm{~m}, \div 1^{\circ} 0$. clay (type-localities; G. O. Sars I.c.).

352. Dulichia nordlandica Boeck.

Dulichia nordlandica G. O. Sars, Crust. of Sorway, vol. 1. 1895, p. 641, pl. 231 fig. 2 , pl. 232 fig. 1.

Dulichia nordlandica Stebbing, Tierreich, vol. 21, 1906, p. 711.
Ocenrrence:
$63^{\circ} 06^{\prime} \mathrm{N}, 56^{\circ} 00^{\prime} \mathrm{W}, 2258 \mathrm{~m}, 2^{\circ} 4$. "Iugolf" St. $24: 25$ - VI-1895. 1 J. $64^{\circ} 54^{\prime} \mathrm{N}, 55^{\circ} 10^{\prime} \mathrm{W}, 74 \mathrm{~m}, 3^{\circ} \mathrm{s}$. "Iugolf" St. 27: 1-VII-1895. 1 S. $62^{\circ} 0^{\prime} \mathrm{N}, 21^{\circ} 36^{\prime} \mathrm{W}, 1591 \mathrm{~m}, 33$. "Ingolf" st. 40: 9-VIII-1845. 1 jur., defective, determination not certain. $63^{\circ} 05^{\prime} \mathrm{N}, 20^{\circ} 07^{\prime} \mathrm{W}, 557 \mathrm{~m}$. "Thor" St. 167: 14-VII-1903. 1 j .

Distribution. From the Skagerrak along Norway to Lofoten, $200-640 \mathrm{~m}$; for special localities see K . Stephensen, Tromso Mus. skr., vol. 3, 1935 12, p. 418.
353. Dulichia abyssi u. sp. (Figs. 30-3I).

Occurrenct:
$6434^{\prime} \mathrm{N}, 31^{\circ} 12^{\prime} \mathrm{T}, 2448 \mathrm{~m}, 1^{\circ} 6$. "Ingolf", st. 11 : $21-\mathrm{Y}-1895$. 10 §. 4 mm .
$63^{\circ} 30^{\prime} \mathrm{N} .5 t^{2} 25^{\prime} \mathrm{IV}, 1096 \mathrm{~m}, 3^{\circ} 3$. "Ingolf" st. 25: 26-VI-1895. $1 \mathrm{3}, 5 \mathrm{~mm}$.
combined, not much produced. No traces of eyes could be found Antenne 1-2 lost. Side-plates all rather small, none of them armed with spines or teeth. Pereiopod 1, 5th joint about 11/2 times as long as 6th joint; dactylus in length equal to 6 th joint. Pereiopod 2, 5th joint cup-shaped, short, 6 th joint broad oval, rather similar to D. spinosisima (G. O. SARs 1895, pl. 228); palm defined by a stroug tooth, and having a largel and a smaller tooth near finger-hinge: dactylus strong, overlapping palm, with a tooth on inner margin near base. Pereiopod 3 , seeoud joint not dilated, in length equal to 4 th and 5 th joints together. Pereiopod 4, the distal joints are lost; but in specimens from other stations, with the limb preserved, second joint is widened in the central part anrl shorter than $1^{1 / 2}$ times the leugth of 4 th joint; thus second joint is much shorter than th and 5th joints together. Pereiopods $5-7$ lost. Uropod 1, peduncle with 5 spimes on outer margin: peduncle in length subequal to outer ramus, or two thirds of inner ramus. Uropod 2, peduncle shorter than in uropod 1, two thirds of onter ramus or one third if inner ramus.

The f from the other stations agree fairly well with the type described above, but are somewhat smaller, 45 mm ; in the smallest ô, 4 mm (Stat. 11), pereiopod 2 has a form intermediate between the type and the specimen from St. $2 t$ described below as D. (abyssi?).

Origerous $\mathcal{O}, 5 \mathrm{~mm}$. In the sample from St. 36 there are a few \subset, including a single ovigerous Q and a q with marsupinm; but they are rather lefective. Antema 1 seems to be normal, but is rather damaged; articulation in flagellum cannot be stated with certainty. Antenna 2 lost. Pereiopod 1 not essentially different from prp. $1 \underset{j}{j}$. Prp. 2, second to fourth joints similar to \hat{o} : 5 th joiut much shorter than second, but a trifle broader: 6 th joint in length equal to 5th. oral, maximal breadth about three fifths of length, with a short, slightly coneare palm, and with spines and setre on under margin; dactylus not essentially longer than
palm, not very stont. Pereiopods 3 I mot essintially dilferent from $\hat{0}$. Perejoporls 57 lost. C'roporls 12 nut very dilfarent from \hat{o}, but predunches shotere in redalion to rami.

This new specios difters from all other sperites of the gembs.

 Bat the hand of perejoped 2 is at litte difiorent: in the present
 the two later teoth of pahm, and the suall touth on patm turar

Fig. 31. Mulichiet ubyssi fo "Ingolf" sit. 33f.

hand of pereiopod 2 in both sexes. Especially in pereiopod 21) is very different from all other species (except D. spinosissimet): msually 6 th joints in pereiopods I and 2 in the other species are fairly alike.

353 a. Dulichia (abyssi?) (Fig. 3o).

Occurreuce:

 1 ô about 6 mm .
Description. This specimen is rather defective: antemme 1 -2, pereiopods 5 7, and apices of rami of uropods are lost.
${ }^{1}$) pereiopod $2 z$ is not described in D aretica Murdoch 1885, 4 . bispinn Gurjanovia 1930, and D. mucera G. (1. sars 1879.

Stat. 24; dactylns somewhat longer. Nso in uropod 2 there is a difference: peduncle is longer, viz., two ihirds (not half) the length of pedunele of uropod 1 . Pereiopods 1 and $3-t$ agree wedl with 1. abyssi.
354. Dulichia spinosa n. sp. (l゙iss. 33-34).

Occurrence

 $1 \hat{o}$ ad., $1 \delta_{j}^{3}$ jux.. and a few $\not \subset$ ovig., all rather defective.
Deseription of \hat{o} ad., 6 mm (Fis. 33). Had and body nearly as in 1) porrecta. Eyes well developed. rombd, colourless, size as

Fig. 33. Dulichia spinosa ô and young ô $(J=$ young specimen $)$.

Fig. 34. Dulichia spinosa ㅇ.
in D. porrecta. Antennæ 1-2 lost. Pereiopod 1, side plate rather small, rounded rectangular, without spiniform process; 5th joint very broad, or 1^{1} a times as broad as the oblong oval next joint. Pereiopod 2, side plate has a long spiniform process, two thirds the length of second joint; second joint long, distally with a rounded lobe; 6th joint in length equal to second joint, hroad, with a large, oblique thmb-like process and a shorter process
near finger hinge; dactylus has at base inside a process. Pereiopods 3-4 rather short, seeond joint dilated; pereiopods 5-7 lost. Uropods 1-2 agree in the relative lengths of peducles and rami fairly well with D. porrecta; and as in the said species uropod 1 has both onter margin of peduncle and inuer margin of inner ramus (not drawn in my fig. of of) minntely spinulose.

A ô jur., about 1.5 mm , dilfors from the adult $\hat{3}$ mainly in pereopod 2 which has the spine on the sidp plate mu homather; second joint very short, and likewise the thamb on metacapus very short. Pereioperl 2 is not much longur than perviopod 1 which is of an appearance not manly different from the admit \mathfrak{j}.

Description of quvig., ahout timm (Fig. 3i). Antemer 1 2 as in D. porreeta. Pereioporls 1 and 31 not different from ${ }^{\circ}$. Pemiopod 2, side plate evenly rounded, without spine: Sth joint over two thirds the length of second joint; bith joint oval. $1^{11 / 2}$ times as
long an 5 th juint; dactylus remoly curvol, half as lomg as 6 th

 'roporls $1 \stackrel{2}{ }$ agree wedl with those of j.

butichia, specios indeterm.

 1 f. wory defoctive

III. Tribe: Ingolfiellidea.

Family: Ingolfiellidæ H. J. Hansen.

Ingolfiellider 11. I. Inansen, l. c. 1903, 1. 130.

Genus: Ingolfiella H. J. Hansen.
Ingolfielle H. J. Hansen. I. e. 1903 , p. 130 .
355. Ingolfiella abyssi H.J. Hansell.

Ingolfiella abyssi H. J. Hansen, I. e. 1903, p. 118 , pl. 14 figs. 1 18. pl. 15 figs. 19-21.

Oceurrence:
$59^{\circ} 12^{\prime} \mathrm{N}, 51^{\prime} 05^{\prime} 11,3521 \mathrm{~m} .1^{\circ} 3$. "Ingolf" St. 38: 30-171-1895. I specimen (type-locality: II. J. Hasses l. c.).
Not found elsewhere.

IV. Tribe: Caprellidea.

Fauily: Caprellidæ Daura.

Since 1903, when P. Mayer issued his list and key to all genera of Caprellide (Siboga-Exp., vol. 31, ple 14-16), the following new genera have been ereeted (according to Zool. Record up to 1938):

Liriarchus, for L. perplexus 11.sp. (SW. Australia), P. Mayer, in Fauna Südwest Austral., heransgeb. r. W. Mielnzelsen u. R. Hartmeyer, vol. 4, 1912, p. 5, figs.

Mayerella, for M. limieola n. sp. (Bay of Fundy), Huntsman, Contrib. Canad. Biol. 1911-14, fase. I, 1915. p. 10, fies.
Eginoides, for E. gaussi n. sp. (S. Indian Occan), Schellenbery, D. Südpolar-Exp., vol. 18, 1926, p. 165, figs. ${ }^{1}$).

Psendocaprellina, for I^{\prime}. pambanensis n. sp. (Gulf of Manaar, shallow water). Raj. Bull. Midras Mus.. vol. 1. 1927, p. 127, figs.
Dodecasella, for D. elegans n. sp. (A. Geurgia), Barnard, Ann. Mag. Nat. Hist., (10). vol. 7, 1931, p. 430. and Discorery Rep.. vol. 5, 1932, p. 304, fig.
Eugustravlar, for E. jupomicus n. sp. (Japanese Sea), schurin. Zool. Anz., rol. 112. 1935, p. 200, figs.
Haplourthron, for II. laeve n. sp. (Japanese Sea), Schurin, ihid.. p. 202, figs.
${ }^{1}$) Veoxenodice coprollinoides n. gen. n. sp. Schellenberg 1926, is in
Zool. Record 1926 erroneously listed under Caprellidea: belongs to fam. Podocerido ($=$ Inhlichide).

Prorginime n. gean.. for I'arripalpus nortegicus k. St. 1931. k.. Stephensen, Zool. of Iceland, vol. 3, no. 26, 1910, p. 70.

Peduculima Baceseui n. gen. et n. sp. Ln nouveau caprellide des parages de Monaco. - A. Carausu, Bull. Inst. Océanogr. Monateo, no. 796,20 mai 1941,8 plo.. figs.
I'arcipalpina. Protellina, and Thorma nn. gen., are deseribed below.

Genus: Protellina n. gen.

Pereiopords $3-4$ missing, the ot her pairs normal, 3 pairs of gills (on second to fourth segment). Antenna 1 , a short accessory flagellum present. Antema 2. Hagellum 6-articulate. Nandible with molar process and three-articulate palp; maxillipeds normal (the other oral parts are not examined). I pair of three-artienlate pleopods in \mathfrak{j}. f unknown.

Genotype: Protellina ingolfin. sp.
356. Protellina ingolfi n. sp. (Fig. 35).

Ocenrence:
$65{ }^{\circ} 34^{\prime} \mathrm{N}, 7^{\circ} 31^{\prime} \mathrm{W}, 1435 \mathrm{~m}, \div 0^{\circ} 8 . "$ Ingolf" St. 105: 11-1H-1896.
10 . about 19 mm .
Descriptiou of o (adult!), 19 mm (Fig. 35). Body rather narrow and elongate; the coaleseed cephalon + first mesosome

List of the most important eharacters of the new genera ${ }^{1}$).

1) Arranced like the "talellarische Ubbersicht der Gattungen" in P. Marer, Siboga-Exp., vol. 34, 1903, p, 14; but the "Raderhaare" (for deflnition see P. Mayer, Fauna u. Flora Golf Neapel, vol. 6, 1an2, p. 107) are omitted. as the literature on the new genera has no mention of them.
segment in length about two thirds of second segment. Third to fifth segments subequal in length, about $11 / 2$ times as long as second segment; 6th segment in length equal to first ; 7th segment not longer than deep. Urosome very short, with a short dorsal lobe and a pair of short lateral lobes: on pleopods see below.

First to 5 th segments have each one spine at the posterior end in the dorsal line, and second to 5 th segments have besides a pair of spines nearly at the central part of the dorsal side; 6th segment has a pair of dorsal spines at the hind end, and 7th segment is dorsally smooth. In addition to the spines mentioned above second segment has two spines at each side of the fure end; third and fourth segments have one pair of lateral spines at the fore end, and third to 7 th segments have a spine abore the basal part of the corresponding gill or limb. Besides second to sixth segments have some small acute warts along the dorsal and rentral sides.

Eyes small, orbicular, colourless.
Antenna 1 (apex lost), at least as long as head + three first segments; second and third joints subequal in length, twice as long as first joint; the preserved part of flagellum as long as third joint of peduncle, and consisting of 17 joints: accessory flagellum half as long as first joint of flagellum, has one joint. Antenna 2 reaches to distal end of second joint of antenna 1 ; the two distal joints of peduncle subequal in length: flagellum in length two thirds of 5 th joint of peduncle, 6 -articulate.

Pereiopod 1 with carpus expanded below to a rounded lobe; hand longer than carpus and oval triangular in form. palm straight and defined by an obtuse angle earrying a short spine. Pereiopod 2 has none of the proximal joints apically produced into acnte projections; carpus very short, hand exceedingly large and oblong fusiform in outline, with upper edge slightly arcnate, and with lower edge forming two distant acute lappets, the posterior of which is tipped with a small spine, and having in front a broad. denticulate projection. defined behind by a deep sinus; dactylus strong, falciform, as long as the long paln. Pereiopods 5-7 are alike, but a trifle increasing in length from prp. 5 to prp. 7; 6th joint rather strong and with palm spinulose and defined by a projection with 2-3 juxtaposed spines (also tth-5th joints have short, but rather strong spines along fore edge): dactylus strong. slightly curved. Pereiopod 5 is fixed not at hind end, but a trifle behind middle of 5th segment.

The gills are narrow, and in segment 2 much shorter than in segments 34 . No penis could be found.

The three joints in the pleopods are subequal in length, but tapering toward the apex.

Genus: Parvipalpina n. gen.

Pereiopods 3-4 missing, pereiopod 5 consists of a single budlike joint. Pereiopods $6-7$ normal. 2 pairs of gills (on third and fourth segment). Antenne 1-2 rather short; aecessory Hagellum very short. Antema 2 has no "Ruderhaare"; flagellum 2-articulate.

Oral parts were not dissected out. Palp of mandible is 3 -articulate, with two spines on third joint; maxillipeds, palp seems to be normal; inner and outer lobes could not be examined.

Abdomen of \hat{o} has no appendages. \circ unknown.
Genotype: Parcipalpina cerrucosa n. gen. n. sp.
357. Parvipalpina verrucosa n. sp. (Fig. 36).

Ocelurrence:
$60^{\circ} 37^{\prime} \mathrm{N}, 27^{\circ} 52^{\prime} \mathrm{W}, 1505 \mathrm{~m}, 4^{\circ} 5$. "Ingolf" St. 78: 13-NI-I896. 13 . 8 mm .
Description of ©. 8 mm (Fig. 36). Body very sleader. First segment a trifle shorter than head. Length ratio of body segments: 2 (head + first segment) $: 3: 5: 7: 10: 5: 1$. Head, 1st and 7 th segments are smooth. There are no dorsal or lateral spines, but 2nd to 6ith segments have small warts or tubercles on dorsal side, 5th and 6th also on ventral side.

Pereiopod 1 rather slender. Pereiopod 2, second joint long and narrow, longer than 6th joint, and without spine-tooth at lower end; hand rather powerful, oval, with palm evenly curved, without teeth or other projections, but defined by a triangular lobe tipped with a rather long and stout spine. Pereiopods $3-4$ quite missing, but there are gills on the segments in question. Pereiopod 5 is a small bud-like, 1-articulate process. fixed at the middle of 5th segment and tipped with a seta. Pereiopod 6 is a trifle longer than pereiopod i, becanse of the greater length of the first free joint; but these two pairs of pereiopods are quite alike and of the normal, subcheliform shape; th and 5 th joints have setæ on fore margin, palm has a few short spines. Abdomen very short,

Fig. 35. Protellinn ingolís.

Fig. 36. Parvipalpina verrueosa of.
with a single medio-dorsal lobe and a pair of ventro-lateral lobes as in several other genera, but without limbs.
of unknown.

Genus: Thorina n, gen.

Perciopods 3-4 missing, the other pairs normal. Two pairs of gills (on third and fourth segments). Antema 1, no accessory flagellum. Antenna 2, flagelhum 2-articulate. Mandible with molar
longer than first; flagellum about as long as pednncle, 16-articulate; no accessory flagellum. Antenna 2 as long as peduncle of antenna 1, rather narrow: flagellum short, 2-articulate.

Pereiopod 1 about as in Protellina ingolfi (fig. 35), but the hand is somewhat narrower. Pereiopod 2, second and third joints each terminate in a spine-like process on fore-margin; hand very powerful, oval, with npper edge boldly curved and terminating in front in a small conical projection; palm evenly curred, defined by a triangnlar lobe tipped with a small spine, and with two

Fig. 37. Thorinu spinosu \ddagger oxis.
process and 3 -articulate palp; palp of maxilla 2 has two joints. f has two pairs of short, bud-like, l-articulate appendages on abdomen (0^{-1} unknown). Of the two pairs of marsupial plates the first pair is ciliated both on fore and hind margin, the second pair only at the lower corner.

Genotype: Thorina spinosa n. gen. n. sp.
358. Thorina spinosa 11. sp. (Fig. 37).

Ocenrrence:
$61^{\circ} 15^{\prime} \mathrm{N}, 9^{\circ} 35^{\prime} \mathrm{W}, 900 \mathrm{~m}$. "Thor" St. $99: 22-1904.7$ ㅇ $8-10 \mathrm{~mm}$ (5 \& juv. $8-9 \mathrm{~mm}, 1$ ovig. $\circ 10 \mathrm{~mm}$, and 1 of with large bnt empty marsupium 10 mm).

Description of ovigerous $7,10 \mathrm{~mm}$ (Fig. 37). Body rather slender. First segment very short, not longer than head, and in length only about one third of segment 2 . Segments $3-4$ subequal in length, but longer than second segment; 5 th segment a trifle longer than 4 th; 6th and 7 th segments short. Head and first segment are dorsally smooth; 2nd and 4th to 6th segments have two dorsal spines each, 3rd segment has 3 , and 7 th segment is dorsally smooth; all the dorsal spines are umpaired. Third and 5 th segments hare a pair of rentro-lateral spines near fore end, and there is a short spine above base of all perciopods (except first pair) and gills; besides there is a pair of rather short ventrolateral spines in front of base of pereiopod 6 .

Eyes could not be traced. Antenna 1 a trifle longer than head - 3 first segments; second joint the longest, third joint a trifle
small teeth near finger hinge; dactylus rery strong, a trifle shorter than palm. Perciopols $5-7$ are slightly increasing in length from no. 5 to no. 7 ; pereiopod 5 is mnch more slender than prp. 6-7, but of a similar shape; on fore margin of th-6th joints of these three pairs of legs there are very slender spines, not short heavy spines as in Protellina ingolfi (fig. 35). The gills are narrow.
o mknown.

Gonus: Æginella Boeck.

359. Æginella spinosa Boeck (Chart IX).

Eginella spinosa G. O. Sars, Crust. of Norway, vol. 1, 1895, p. 653, pl. 235 fig. 1.

Occurrence:
$63^{\circ} 04^{\prime} \mathrm{N}, 9^{\circ} 22^{\prime} \mathrm{W}, 493 \mathrm{~m}, 5^{\circ} 2 . " I n g o l f "$ St. 2: $12-\mathrm{V}-1895$.
$64^{\circ} 07^{\prime} \mathrm{N}, 11^{\circ} 12^{\prime} \mathrm{W}, 446 \mathrm{~m}, 2^{\circ} 5$. "Ingolf" St. 4 : 13-Y-1895.
$64^{\circ} 54^{\prime} \mathrm{N}, 55^{\circ} 10^{\prime} \mathrm{W}, 740 \mathrm{~m}, 3^{\circ} \mathrm{s}$. "Ingolf" St. 27: 1-ITl-1895. $65^{\circ} 16^{\prime} \mathrm{N}, ~ 55^{\circ} 05^{\prime} \mathrm{W}, 682 \mathrm{~m}, 3^{\circ} 6$. "Ingolf" St. 35 : 18 - V'lI-1895. $61^{\circ} 42^{\prime} \mathrm{N}, 9^{\circ} 36^{\prime} \mathrm{W}, 1026 \mathrm{~m}, 4^{\circ} 8$. "Ingolf" St. 14 : 14-VIIl-1895. $62^{\circ} 49^{\prime} \mathrm{N}, 7^{\circ} 12^{\prime} \mathrm{W}, 520 \mathrm{~m}, 1^{\circ} 6$. "Ingolf" St, 144: 11-11IT-1896. $68^{\circ} 28^{\prime} \mathbf{N}, 54^{\circ} 47^{\prime} \mathrm{W}, 450-350 \mathrm{~m}$ 。"Tjalfe" St. 199: 18-VIII-1908. $68^{\circ} 08^{\prime} \mathrm{N}, 57^{\circ} 30^{\prime} \mathrm{W}, 398 \mathrm{~m} .{ }^{+}$Dana" St. 2361: 26-V1-1925, Ad. 太. Jensen leg.
$62^{\circ} 30^{\prime} \mathrm{N}, 1^{\circ} 56^{\prime} \mathrm{E}, 525 \mathrm{~m}, 4^{\circ} 9$. " Michacl Sars" 29-1’II-1902. Ad. S. Jensen leg.

Clart IX. Distribution of Eginella spinosa. $=$ new localities, $\mathrm{O}=$ localities from the literature.
$66^{\circ} 49^{\prime} \mathrm{N}, 56^{\circ} 28^{\prime} \mathrm{W}, 435 \mathrm{~m}, 4^{\circ} 4$, sand, mud. Wandel 1889 . Only I or 2 specimens were taken at a time.

Distribution (Chart IX). West and East Greenland; East and South Iceland; from South East Spitsbergen and Murman Coast along Norway to Hangesund; depths usually (15) $100-400 \mathrm{~m}$. For special localities see K. Stephensen, Tromso Mus. Skr. vol. 3, 1935-42, p. 429, and Zool. of Iceland, vol. 3, no. 26, 1940, p. 69 .

Genus: Æginina Norman.

360. Aginina Iongicornis (Kroyer) (Chart N).

Egina celinata G. O. Sars, Crust. of Norway, vol. 1, 1895, p. 651, pl. 234 fig. 2.
Eginina longicornis Shoemaker, Contrib. Canad. Biol. and Fish., vol. 5, 1930, p. 352 (131), lit.

Occurrence:

$63^{\circ} 35^{\prime} \mathrm{N}, 10^{\circ} 24^{\prime} \mathrm{W}, 512 \mathrm{~m}, 0^{\circ} 5$. "Ingolf" St. 3; 12-1-1895
$64^{\circ} 07^{\prime} \mathrm{N}, 11^{\circ} 12^{\prime} \mathrm{W}, 446 \mathrm{~m} .2^{\circ} 5$. "Ingolf" St. f: 13-V-1895.
$66^{\circ} 18^{\prime} \mathrm{N}, 25^{\circ} 59^{\prime} \mathrm{W}, 621 \mathrm{~m} . \div 0^{\circ} 75$. "Ingolf" St. 15: It-1I-1895. $63^{\circ} 06^{\prime} \mathrm{N}, 56^{\circ} 00^{\prime} \mathrm{W}, 2258 \mathrm{~m} .2^{\circ}$. "Iugolf" St. 24: 25-VI-I895. 1 small specimen on Thujaria; determination not certain. $69^{\circ} 46^{\prime} \mathrm{N} .51^{\circ} 22^{\prime} \mathrm{W}, 475 \mathrm{~m}$. "Tjalfe" $27-V I I-1908$.
$68^{\circ} 28^{\prime} \mathrm{N} .54^{\circ} 47^{\prime} \mathrm{W}, 450-350 \mathrm{~m} . \quad$ "Tjalfe" St. 199: 18-V11I-1908. $68^{\circ} 08^{\prime} \mathrm{N}, 57^{\circ} 30^{\prime} \mathrm{W}, 398 \mathrm{~m}$. "Dana"St. 23f1: 26-VI-1925. Ad.S.

Jensen leg.
Usually only one or a few specimens were taken at a time. The length is ip to about $36 \mathrm{~mm}(\overrightarrow{0})$.

Distribution (Chart X). Widely distributed, especially in the arctic area, mainly littoral-sublittoral. For special localitics see Stappers, in Duc d'Orléans, Camp. Arctique, Crust. Malac., 1911, p. 74, Shoemaker l. c. 1930 , p. 352 (134), and K'. Sterhensen, Tromsn Mus. Skr., vol. 3. 1935-42, p. 430, and Zool. of Iceland, vol. 3, no. 26,1940, p. 69.

Genus: Proxginina K. Stephensen.

Proaginina K. Stephensen, Zool. of Iceland, vol. 3, no. 26, 1940, p. 70.

Genotype: I'roaginina norecgica $=$ P'areipalpus norvegieus K. Stephensen 1931.

3fi. Proxginina norvegica (K . Stephensen).
Pareipalpus norvegicus K. Stephensen. K. Norske Vid. Selsk. Skr., 1931, 110. 5. Trondlijem, figs.
Iroaginima norraiea K. Stephensen, l. c. 1940. p. 70, fiys

P'rorginina norregica K. Stephensen, Tromso Mus. Skr., vol. 3 1935-42. p. 433. figs.

Oceurrence:
$63^{\circ} 06^{\prime} \mathrm{N}, 56^{\circ} 00^{\prime} \mathrm{W}, 2258 \mathrm{~m}, 2^{\circ} 4$. "Ingolf" St. 24: 24-IT-I895. $1 / 2$ specimen +1 .
$61^{\circ} 50^{\prime} \mathrm{N}, 56^{\circ} 21^{\prime} \mathrm{W}^{\top}, 2702 \mathrm{~m}, 1^{\circ} 5$. "Ingolf" St. 36: 28-\II-1895. 1 คf(?), I ?
$3^{\circ} 35^{\prime} \mathrm{N}, 10^{\circ} 24^{\prime} \mathrm{W}, 512 \mathrm{~m}, 0^{\circ} 5$, Hydroids. "Ingolf" St. 3: I2-V1895. Numerons specimens.
$61^{\circ} 42^{\prime} \mathrm{N}, 9^{\circ} 36^{\prime} \mathrm{W}, 1026 \mathrm{~m}, 4^{\circ} 8$. "Ingolf" St. 44: I4-VIII-1895. l specimen.
The length is up to abont 20 mm .
Distribution. East Greenland $66^{\circ}-72^{\circ} \mathrm{N}, 40-200 \mathrm{~m}$ (K. Stephensex, Meddel. om Gronl. vol. 12I, no. 14, going into the

Chart X. Distribution of Eginina longiromis. The ring indicates a locality which could not be noted exactly:

Remarks. The $\mathcal{O}^{(?}$? is 8 mm , the two $\%$ have large marsupium and are $y-10 \mathrm{~mm}$ in leugth. These specimens are much smalker than the specimens hitherto deseribed (which were 19-32 mm) 5 th segment is only twice the length of segment 2 ; pereiopods 5-7 are lost, but one pereiopod 6 is preserved in the 0 .

Distribution. North Norway c. $70^{\circ} 40^{\prime} \mathrm{N}, 200-350 \mathrm{~m}$, rocky bottom (type-locality; K. Stephexsen 193I). South of Iceland

Genus: Caprella Lamarck.

362. Caprella microtuberculata (\%. O. Sars.

C'aprellu microtuberculuta (5. O. Sars, Norske Nordhars-Exp., C'rust., rol. 1, 1885, p. 222 , pl. 18 fig. 3.
C'aprella microtuberculata C. O. Sars, C'rust. of Norway, vol. 1, 1895. p. 664. pl. 23:9 fig. 1

C'aprella microtnberculata K. Sitt phensen, Tromso Mus. Skr.., vol. 3, 1935-12, p. 436 (lit.).
Ocrurrence:
$63^{\circ} 04^{\prime}$ N, 9"22' II. $493 \mathrm{~m} .5^{c} 2$. "Ingolf" st. 2: 12-V-1895. 4 specimens.
press). From North Norway (Hammerfest) to Spitsbergen. Franz Joseph Land and Siberia $147^{\circ} \mathrm{E}$, from the shore down to 329 m ; for special localities see K. Stephexsex, I. e.

363. Caprella punctata Bueck.

Cruprelth punctate (i. O. Sars. Crust. of Norway, vol. 1, $18 \% 5$. p. 660, pl. 237 fig. 2.

Oecurrence
$61^{\circ} 42^{\prime} \mathrm{N}, 9^{2} 36^{\prime} \mathrm{W}, 1026 \mathrm{~m}, 4^{*} 8 . " 1 n g o l f "$ St. 41: 11-VIII-1895. 29 with large, but empty marsupium $10-12 \mathrm{~mm}, 1 \%$ with very small marsupial plates.
These specimens agree fairly well with (6.O.Sars I.e.
Distribution. From North Sea (Agger in West Jutland) along Norway to Sipitshergen and Novaja Zemlya; possibly also the Faroes. For special localities see K. Stephexsex, Tromso Mus. Skr., vol. 3. 1935 42. p. 442. A revision has shown that specimens from East Ieeland, 397 m, recorded with ? in K. Stephersex, Zuol. of Iceland. vol. 3, no. 26. 1940, 1, Tt. no doubt belong to this species.

3i.1. Caprella horrida (i. O. siars.
Caprella spimosissimu (土. O. Sars, Norske Nordhavs-ľxp., (rust, vol. 1, 1885, p. 225, p. 18 lig. 4.
Caprella homida K. Stephemsen, Tromso Mlus, Skr., Vol. 3. 19355 12, p. 438 (with lit.).

Oecurrence:
 specimens (s. 7 with marsupium).

('nprolla riuti k. itcophensen, Meddel. om (ironl., vol. 53, 1916, P. $2!26$, lims.

Oecurrence:

If with large lat .mpty marsupiom up to ! mm; 3j up to 10 mum.
6.) $11^{\prime} \mathrm{N}, 30^{\circ} 399^{\prime} \mathrm{W}$, 1116 m, 21. "Ingolf" iv. 95: 27-IJ-I84ti.

Fig. 38. Caprella rinkiơ. St. 95.
$63^{\circ} 35^{\prime} \mathrm{N}, 10^{\circ} 24^{\prime} \mathrm{W}, 512 \mathrm{~m}, 0^{\circ} 5$. "Ingolf" St. 3: 12- $\mathrm{V}^{\prime}-1895$. Numerous specimens (0 . q with marsupium).
$64^{\circ} 07^{\prime} \mathrm{N}, 11^{\circ} 12^{\prime} \mathrm{W}, 46 \mathrm{~m}, 2^{\circ} 5$. "Ingolf" St. $4: 13-\mathrm{V}-1895$. About 10 speeimens ($\widehat{0}$, of with marsupium).
$66^{\circ} 15^{\prime \prime}$ N, $25^{\circ} 59^{\prime} \mathrm{W}, 621 \mathrm{~m}, \div 0^{\circ} 75$. "Ingolf", St. 15: 1-I1-1895. 2 specimens, determination not certain.
$61^{\circ} 42^{\prime} \mathrm{N}, 9^{\circ} 36^{\prime} \mathrm{W}, 1026 \mathrm{~m}, 4^{\circ} 8$. "Ingolf" St. 44: 14-VII-1895. $21 / 2$ q with marsupium.
$63^{\circ} 26^{\prime N} \mathrm{~N}, 7^{\circ} 56^{\prime} \mathrm{W}, 887 \mathrm{~m}, \div 0^{\circ} 6$. "Ingolf" St. 138: 10-V111-1896. A few specimens $(0, q)$).
$62^{\circ} 30^{\prime} \mathrm{N}, 1^{\circ} 5 \mathrm{f}^{\prime} \mathrm{W}, 550-600 \mathrm{~m}, ~ \div 1^{\circ} 17$. "Miehael Sars" 29-V11902, Ad. S. Jensen leg., 1 ô.
$62^{\circ} 40^{\prime} \mathrm{N}, 1^{\circ} 56^{\prime} \mathrm{N}, 700 \mathrm{~m}, \div 10^{\circ} 3$. "Michael Sars" 19-T11-1902. Ad. S. Jexsen leg. Several ô, q.
$60^{\circ} 19^{\prime} \mathrm{N}, 5^{\circ} 22^{\prime} \mathrm{W}, 1200 \mathrm{~m}, \div 0^{\circ} 15 . ~ "$ Nichael Sars" $10-\mathrm{V} 111-1902$, Ad. S. Jeasen leg. Numerous ô, $?$
The length is up to 25 mm , but the majority, hoth o and f, are smaller: $15-20 \mathrm{~mm}$.

Distribution. The Aretic deep basin with adjacent waters, from Aretic America and East Gremland to Spitsbergen, Niberia and the Faroe Chamel. For special localities and references see K. Stephensen, Tromso Mus. Skr.. vol. 3, 1935 12, p. 13s, Zool. of leeland, vol. 3, no. 26, 1940, p. 75. and lledded. om (ironl., vol. 121, no. 14, just going into the press.

A few specimens: q with embryos in marsupium up to 10 mm 201015 mm .
$65^{\circ} 30^{\prime} \mathrm{N}, 55^{\circ} 26^{\prime} \mathrm{W}, 550 \mathrm{~m}, 1^{\circ} 5$. WaxDel 1889.1 q juv., c. 9 mm , 1 small specimen.

Remarks. The q agree on the whole well with the type specimens, but the hand in pereiopord 2 is a trifle narrower; in some eases the paired dorsal teeth are longer, and segments 6-7 are dorsally smooth.
ô were previously not known. The largest ô (15 mm , "Ingolf" st. 95 ; fig. 38) has the hand of pereiopod 2 much narrower than in q and the palm provided with a large poison fang ("Giftzahn"). Besides the limb is all over covered with delicate ciliae, about as in (. ciliata G. (O. sars (G. O. Sars 1895, pl. 239 fig. 2). In this large specimen the paired dorsal teeth on segment 5 are much higher than on the other segments, and the dorsal warts are much fewer than in

In the smaller of $(10 \mathrm{~mm})$ pereiopod 2 is much more scarcely setose than in the large $\hat{\delta}$. and in some segments (nos. 2, 3, 1, 6. 7) the paired dorsal teetly are in one of the small of quite missing.

Distribution. Mouth of Bredefjord, South West Greeuland, 460-550 m1 (type-lucality; K. stephexsen l. c.).

THE INGOLF-EXPEDITION 1895-1896

$\begin{aligned} & \text { Sta- } \\ & \text { tion } \\ & \text { Nr. } \end{aligned}$	1)ate	Lat. N.	Long WV.	$\begin{aligned} & \text { Depth } \\ & \text { in } \\ & m \end{aligned}$	Bot-tomtemp.	Sta- tion Nr.	Date	Lat. ${ }^{\text {N }}$.	Long 11:	Wepth in m	Bot-tomtemp.	$\begin{aligned} & \text { Sta- } \\ & \text { tion } \\ & \text { Nr. } \end{aligned}$	Late	lat.	Long 11.	1)epth in 111	Bot. tom. temp.
	1895												1896				
1	$11-\mathrm{V}$	$62^{\circ} 30$	$8^{\circ} 21^{\prime}$	2.49	$7 \times$	24	$25-11$	63.166°	$543^{\circ} 010{ }^{\prime}$	2258	24	45	11-V	$61^{\circ} 33^{\prime}$	6 43'	1211	± 17
\because	12	$63^{\circ} 04^{\prime}$	$9^{\circ} 29$	493	53	25	26	$63{ }^{\prime \prime} 30^{\prime}$	54.25	1096	33	46	- -	$61^{\circ} 32^{\prime}$	$11^{\prime} 36^{\prime}$	1359	$2^{\circ} 40$
3	- -	$63^{\circ} 35^{\prime}$	$10^{\circ} 24^{\prime}$	512	$0^{\circ} 5$			$63^{\circ} 51^{\prime}$	53013	456		47	12	$61^{\circ} 32^{\prime}$	$13^{\circ} 4{ }^{\prime \prime}$	1789	$3^{\circ} 23$
4	13	$64^{\circ} 07^{\prime}$	$11^{\circ} 12^{\prime}$	146	25	26	- -	$63^{\circ} 57^{\prime}$	$52^{3} 41^{\prime}$	64	$0^{\circ} 6$	48	- -	$3{ }^{\prime}$	15.11^{\prime}	2165	$3^{\circ} 17$
5	- -	$64^{\circ} 40^{\prime}$	$12^{\prime} 09{ }^{\prime}$	293				$64^{\prime} 37^{\prime}$	$54^{\prime} 24^{\prime}$	205		49	13	$62^{5} 07^{\prime}$	$15{ }^{\circ} 07^{\prime}$	2109	$2^{\text {c }} 91$
6	16 -	$63^{\circ} 43^{\prime}$	$14^{\prime} 34^{\prime}$	170	70	27	1- VII	$64^{\circ} 54$	$55^{\circ} 10^{\prime}$	740	$3^{\circ} \mathrm{R}$	50	- -	63.13	$15^{\circ} 06^{\prime}$	1921	313
7	17	$63^{\circ} 13^{\prime}$	$15^{\circ}+1^{\prime}$	1130	45	28	- -	65) 14^{\prime}	$554{ }^{\prime}$	791	35	51	15	64.15	$14-2$	128	732
8	19 -	$63^{\circ} 56^{\prime}$	$24^{\circ} 40^{\prime}$	256	60	29	5	$65^{\circ} 34^{\prime}$	$54^{\circ} 31^{\prime}$	128	$0^{\circ} \mathrm{O}$	52	- -	$63^{\circ} 57^{\prime}$	$13^{\circ} 3 \underline{y}^{\prime}$	791	$7^{\circ} 87$
9	20	$64^{\circ} 18^{\prime}$	2700	555	$5 \bigcirc 8$	30	10	$66^{\circ} 5 u^{\prime}$	$51^{\prime} 28^{\prime}$	41	$1^{\circ} 05$	53	16	$63^{\circ} 15^{\prime}$	$15^{\circ} 07^{-1}$	1497	$3^{\circ} 08$
10	- -	$64^{\circ} 24^{\prime}$	$\because 8^{\circ} 50^{\prime}$	1484	35	31	11	$66^{\circ} 35^{\prime}$	$55^{\prime} 54^{\prime}$	166	1%	51	18	$63=118$	$15^{\circ} 40^{\prime}$	1301	$3^{\circ} 9$
11	21	$64^{\circ} 34^{\prime}$	$31^{\circ} 12^{\prime}$	2448	16	32	11	$66^{\circ} 35{ }^{\prime}$	$56^{\prime} 38$	599	39	55	19	$63^{\circ} 33^{\prime}$	$15^{\circ} 02^{\prime}$	595	$5^{\circ} 9$
12	22 -	$64^{2} 35^{\prime}$	$32^{2} 37^{\prime}$	1958	03	33	12	$66^{-9} 57^{\prime}$	$55^{\circ} 30^{\prime}$	66	$0 \cdot 8$	56	- -	6.100^{\prime}	$15^{3} 09^{\prime}$	128	7×7
13	- -	$64^{\circ} 47^{\prime}$	$34^{\circ} 33^{\prime}$	1171	30	34	18	$65^{\circ} 17^{\prime}$	$5+^{\prime \prime} 17^{\prime}$	10.4		57	20	$63^{\circ} 37^{\prime}$	13° (2^{\prime}	659	$3{ }^{\circ} 4$
14	-	$64^{\circ} 45^{\prime}$	$35^{\circ} 05^{\prime}$	331	$4^{\circ} 4$	35	- -	$65^{\circ} 16^{\prime}$	$55^{\prime \prime} 05^{\prime}$	682	36	58	- -	$64^{2} 25^{\prime}$	$12^{\circ} 09^{\prime}$	397	$0^{\circ} 8$
15	$4-11$	$66^{\circ} 18^{\prime}$	$25^{\circ} 59$	621	$-0^{\circ} 7$	36	28	$61^{\circ} 50$	$56^{\circ}-21^{\prime}$	2702	15	59		$65^{\circ} 00{ }^{\prime}$	$11^{\circ} 16^{\prime}$	58.1	$0^{\circ} 1$
16	5	$65^{\circ} 43^{\prime}$	$26^{\circ} 55^{\prime}$	471	$6 \% 1$	37	29	60.17	$5{ }^{5} 05$	3229	$1^{\circ}+$	60	21	$65^{\circ} 09^{\prime}$	$12^{\circ} 2 \square^{\prime}$	234	09
17	16	$62^{\circ} 49^{\prime \prime}$	$26^{\circ} 55^{\prime}$	1403	34	38	30	$59^{\circ} 1{ }^{\prime \prime}$	$51^{\circ} 05^{\prime}$	35.1	13	61	- -	$65^{\circ} 03^{\prime}$	$13^{\circ} 06^{\prime}$	104	$0^{\circ} 4$
18	17	$61^{\circ} 44^{\prime}$	$30^{\circ} 29^{\prime}$	2137	$3^{\circ} 0$	39	$9-1011$	$62^{\circ} 00^{\prime}$	29:38	1629	29	62	31	$63^{\circ} 18^{\prime}$	$19^{\circ} 12^{\prime}$	136	$7{ }^{\circ} 9$
19	18	$60^{\circ} 29^{\prime}$	$34^{1} 4^{\prime}$	2949	204	40	- -	$62^{\circ} 00^{\prime}$	$21^{\circ} 36^{\prime}$	1591	33	63	1-11	$62^{\circ} 40^{\prime}$	$19^{\circ} 05^{\prime}$	1506	$4^{\circ} 0$
20	$20-$	$58^{\circ} 20^{\prime}$	$40^{\circ} 48^{\prime}$	3192	$1^{\circ} 5$	41	12	$61^{\circ} 39^{\prime \prime}$	$17^{\prime \prime} 10^{\prime}$	2345	$2^{\circ} 0$	64	- -	$62^{\circ} 06^{\prime}$	$19^{\circ} 00{ }^{\prime}$	1960	$3^{\circ} 1$
21	21	$58^{\circ} 01^{\prime}$	$44^{\circ} 4 \overline{0}^{\prime}$	2505	24	4.	14	$61^{\circ} 41^{\prime}$	$10^{\circ} 17^{\prime}$	1177	$11^{2} 4$	65	\because	$61^{\circ} 33^{\prime}$	$19^{\prime} 00{ }^{\prime}$	2051	$3^{\circ} 0$
22	29	$58^{\circ} 10^{\prime \prime}$	$48^{\circ} 25^{\prime}$	347	14	43	- -	$61^{\circ} 42^{\prime}$	$10^{\circ} 11^{\prime}$	1215	1005	66	- -	$61^{\circ} 33^{\prime}$	$20^{\circ} 43^{\prime}$	2124	$3^{\circ} 3$
23	24 -	$60^{\circ} 43^{\prime}$	$56^{\circ} 00^{\prime}$			44	- -	$61^{\circ} 4 \%^{\prime}$	$9^{\circ} 36{ }^{\prime}$	1026	+8	67	3	$61^{\circ} 30^{\prime}$	$22^{5} 30^{\prime}$	1836	30

$\begin{aligned} & \text { Sta- } \\ & \text { tion } \\ & \text { Nr. } \end{aligned}$	Date	Lat. N.	Long W.	$\begin{gathered} \text { Depth } \\ \text { in } \\ \text { m } \end{gathered}$	Bot- tomtemp.	$\begin{aligned} & \text { Sta- } \\ & \text { tion } \\ & \mathrm{N}_{\mathrm{r}} . \end{aligned}$	Date	Lat. N.	Long W.	$\begin{aligned} & \text { Depth } \\ & \text { in } \\ & \mathrm{m} \end{aligned}$	Bot- tomtemp.	Sta- tion Nr.	Date	Lat. N	Long IV.	Depth in m	Bot-tomtemp.
68	3 VI	$62^{\circ} 06^{\prime}$	$22^{\circ} 30^{\prime}$	1587	$3^{\circ} 4$	92	$25-111$	$64^{\circ} 44^{\prime}$	32-52	1838	14	118	24 - VII	$68^{\circ} 27$	$8^{\circ} 20^{\prime}$	1996	$-1^{\circ} 0$
69	- -	$62^{\circ} 40^{\prime}$	$22^{\circ} 17^{\prime}$	1109	$3^{\circ} 9$	93	26	$64^{\circ}-24^{\prime}$	$35^{\circ} 14^{\prime}$	1444	$1^{\circ}+6$	119	25	$67^{\circ} 53^{\prime}$	$10^{\circ} 19^{\prime}$	1902	$-1^{\circ} 0$
70	4.	$63^{\circ} 09^{\prime}$	$22^{\circ} 0{ }^{\prime}$	252	70	94	- -	$64^{\circ} 56^{\prime}$	$36^{\circ} 19^{\prime}$	384	41	130	- -	,	$11^{\circ} 32^{\prime}$	1666	$-1^{\circ} 0$
71	- -	$63^{\circ} 46^{\prime}$	$22^{\circ} 03^{\prime}$	87				$65^{\circ} 31^{\prime}$	$30^{\circ} 45^{\prime}$	401		121	- -	$66^{\circ} 59^{\prime}$	$13^{\circ} 11^{\prime}$	996	$-0^{\circ} 7$
72	8	$63^{\circ} 12^{\prime}$	$23^{\circ} 04^{\prime}$	371	$6^{\circ} 7$	95	27	$65^{\circ} 14^{\prime}$	$30^{\circ} 39^{\prime}$	1416	$2^{2} 1$	122	26	$66^{\circ}+2^{\prime}$	$14^{\circ} 44^{\prime}$	217	$1^{\circ} 8$
73	- -	$62^{\circ} 58^{\prime}$	$23-3{ }^{\prime}$	915	5%	96	28	$60^{\circ} 24^{\prime}$	$29^{\circ} 00^{\prime}$	1384	1.2	123	28	$66^{\circ} 52^{\prime}$	$15^{\circ} 40^{\prime}$	273	$2^{\circ} 0$
74	9	$62^{\circ} 17^{\prime}$	$24^{\circ} 36^{\prime}$	1309	$4^{\circ} 2$	97	- -	$65^{\circ} 28^{\prime}$	2739^{\prime}	847	55	124	- -	$67^{\circ} 40^{\prime}$	$15^{\circ} 40^{\prime}$	932	$-0^{\circ} 6$
		$61^{\circ} 57^{\prime}$	$25^{\circ} 35^{\prime}$	1433		98	- -	$65^{\circ} 35^{\prime}$	$26^{\circ} 27^{\prime}$	260	59	125	29	$68^{\circ} 08^{\prime}$	$16^{\circ} 02^{\prime}$	1373	$-0^{\circ} 8$
		$61^{\circ} 28^{\prime}$	$25^{\circ} 06^{\prime}$	1561		99	T- VII	$66^{\circ} 13^{\prime}$	$25^{\circ} 53^{\prime}$	352	$\mathrm{Br}_{5} 1$	126	- -	$67^{\circ} 19^{\prime}$	$15^{\circ} 52^{\prime}$	552	$-0^{\circ} 5$
75	11	$61^{\circ} 28^{\prime}$	$26^{\circ} 25^{\prime}$	1469	$4^{\circ} 3$	100	9	$66^{\circ}-3^{\prime}$	$14^{\circ} 02^{\prime}$	111	$0^{\circ} 4$	127	2-\゙III	$66^{\circ} 33^{\prime}$	$20^{\circ} 05^{\prime}$	83	$5{ }^{\circ} 6$
76	12	$60^{\circ} 50^{\prime}$	$26^{\circ} 50^{\prime}$	1518	$4^{\circ} 1$	101	10	$66^{\circ}-23$	$12^{\circ} 0 \overline{0}^{\prime}$	1011	07	128	- -	$66^{\circ} 50{ }^{\prime}$	$20^{\circ} 02^{\prime}$	365	$0^{\circ} 6$
77	- -	$60^{\circ} 10^{\prime}$	$26^{\circ} 59^{\prime}$	1791	$3^{\circ} 6$	102	- -	$66^{\circ} 23^{\prime}$	$10^{\circ} 20^{\prime}$	1412	$-0^{\circ} 9$	129	3	$66^{\circ} 35^{\prime}$	$23^{\circ} 47^{\prime}$	220	$6{ }^{\circ} 5$
78	13	$60^{\circ} 37^{*}$	$27^{\circ} 52^{\prime}$	1505	$4^{\circ} 5$	103	- -	$66^{\circ} 23^{\circ}$	$8^{\circ} 52^{\prime}$	1090	$-00^{2} 6$	130	8	$63^{\circ} 00^{\prime}$	$20^{\circ} 40^{\prime}$	636	$6^{\circ} 55$
79	- -	$60^{\circ} 52^{\prime}$	$28^{\circ} 58^{\prime}$	1230	$4^{\circ} 4$	104	11	$66^{\circ} 23^{\prime}$	$7^{\circ}-5^{\prime}$	1803	$-1{ }^{\circ} 1$	131	- -	$63^{\circ} 00^{\prime}$	$19^{\circ} 09^{\prime}$	1314	$4^{\circ} 7$
80	- -	$61^{\circ} 02^{\prime}$	$29^{\circ} 32^{\prime}$	1761	$4^{\circ} 0$	105	- -	$65^{\circ} 34^{\prime}$	$7^{\circ} 31$	1435	-0.8	133	- -	$63^{\circ} 00{ }^{\prime}$	$17^{\circ} 14{ }^{\prime}$	1407	$4^{\circ} 6$
81	14 -	$61^{\circ} 44^{\prime}$	$27^{\circ} 00^{\prime}$	913	(.) 1	106	12	$65^{\circ} 34^{\prime}$	$8^{\prime} 54^{\prime}$	842	06	133	9	$63^{\circ} 14^{\prime}$	$11^{\circ} 24^{\prime}$	433	$\geq{ }^{\circ}$
82	- -	$61^{\circ} 55^{\prime}$	$27^{\circ} 28^{\prime}$	1552	$4^{\circ} 1$			$65^{\circ} 29$	$8^{\circ} 40^{\prime}$	878		134	- -	$62^{7} 34^{\prime}$	$10^{2} 26^{\prime}$	563	$4^{\circ} 1$
83	- -	$62^{\circ} 25^{\prime}$	$28^{\circ} 30^{\prime}$	1717	35	107	- -	$65^{\circ} 33^{\prime}$	$10^{\circ} 28^{\prime}$	926	-03	135	10	$62^{\circ} 48^{\prime}$	$9^{\circ} \cdot 18^{\prime}$	508	$0^{\circ} 4$
		$62^{\circ} 36^{\prime}$	$26^{\circ} 01^{\prime}$	889		108	13	$65^{\circ} 30{ }^{\prime}$	$12^{\circ} 000^{\prime}$	183	$1^{\circ} 1$	136	- -	$63^{\circ} 01^{\prime}$	$9^{\circ} 11^{\prime}$	489	$4^{\circ} 8$
		$63^{\circ} 36^{\prime}$	$25^{\circ} 30^{\prime}$	755		109	18	$65^{\circ} \because 99^{\prime}$	$13^{\circ} 25^{\prime}$	72	15	137	- -	$63^{\circ} 14^{\prime}$	$8^{\circ} 31^{\prime}$	559	$-0^{\circ} 6$
84	17	$62^{\circ} 58^{\prime}$	$25^{\circ} 24^{\prime}$	1192	$4^{\circ} 8$	110	19	$66^{\circ}+4^{\prime}$	$11^{\circ} 33^{\prime}$	1471	$0 \cdot 8$	138	- -	$63^{\circ} 20^{\prime}$	$7^{\circ} 56^{\prime}$	887	-0\%6
85	- -	$63^{\circ} 21^{\prime}$	$25^{\circ} 21^{\prime}$	320		111	$21)$	$67^{\circ} 14^{\prime}$	$8^{\circ} 48^{\prime}$	1619	-109	139	- -	$63^{\circ} 36^{\prime}$	$7^{\circ} 30^{\prime}$	1322	$-0^{\circ} 6$
86	$23-$	$65^{\circ} 03^{\prime} 6$	$23^{\circ} 47^{\prime} 6$	143		112	- -	$67^{\circ} 57^{\prime}$	$6^{\circ} 44^{\prime}$	2386	-11	140	11	$63^{\circ} 29^{\prime}$	$6^{\circ} 57^{\prime}$	1469	-099
87	- -	$65^{\circ} 02{ }^{\prime} 3$	$23^{\circ} 56^{\prime 2}$	207		113	21	$69^{\circ} 31^{\prime}$	$7^{\circ} 06^{\prime}$	2465	$-1^{\circ} 0$	141	- -	$63^{\circ} 22^{\prime}$	$6^{\circ} 58^{\prime}$	1279	$-0^{\circ} 6$
88	- -	$64^{\circ} 58^{\prime}$	$24^{\circ} 25^{\prime}$	143	$6{ }^{\circ} 9$	114	29	$70^{\circ} 36^{\prime}$	$7^{\circ} 29^{\prime}$	1456	-10	142	- -	$63^{\circ} 07^{\prime}$	$7^{\circ} 05^{\prime}$	1105	$-0^{\circ} 6$
89	24.	$64^{\circ} 45^{\prime}$	$27=20$	584	$8{ }^{\circ} 4$	115	23	$70^{\circ} 50^{\prime}$	$8^{\circ} 29^{\prime}$	162	$0^{\circ} 1$	143	- -	$622^{\prime} 5{ }^{\prime}$	$7^{\circ} 09^{\prime}$	731	$-0^{\circ} 4$
90	- -	$64^{\circ} 45^{\prime}$	$29^{\circ} 06^{\prime}$	1070	$4^{\circ}+$	116	- -	$70^{\circ} 05^{\prime}$	$8^{\circ} 26^{\prime}$	699	-0.4	144	- -	$62^{\circ} 49^{\prime}$	$7^{\circ} 12^{\prime}$	520	$1^{\circ} 6$
91	25	$64^{\circ} 44^{\prime}$	$31^{\circ} 00^{\prime}$	2328	$3{ }^{\circ} 1$	117	24	$69^{\circ} 13^{\prime}$	$8^{\circ} 23^{\prime}$	1889	$-1^{\circ} 0$						

